Discrete & Computational Geometry

, Volume 7, Issue 2, pp 175–188 | Cite as

Tiling polygons with parallelograms

  • Sampath Kannan
  • Danny Soroker


Under what conditions can a simple polygon be tiled by parallelograms? In this paper we give matching necessary and sufficient conditions on the polygon to be tilable and characterize the set of possible tilings. We also provide an efficient algorithm for constructing a tiling.


Balance Condition Outer Loop Discrete Comput Geom Convex Polygon Clockwise Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Asano and T. Asano, Minimum Partition of Polygonal Regions into Trapezoids,IEEE Symp. on Foundations of Computer Science, 1983, pp. 233–241.Google Scholar
  2. 2.
    B. Chazelle, Triangulating a Simple Polygon in Linear Time,IEEE Symp. on Foundations of Computer Science, 1990, pp. 220–230.Google Scholar
  3. 3.
    B. Chazelle and J. Incerpi, Triangulation and Shape-Complexity,ACM Trans. Graphics, vol. 3, no. 2, 1984, pp. 135–152.CrossRefzbMATHGoogle Scholar
  4. 4.
    R. Cleve, Private communication.Google Scholar
  5. 5.
    D. P. Dobkin, D. L. Souvaine, and C. J. Van Wyk, Decomposition and Intersection of Simple Splinegons,Algorithmica, vol. 3, 1988, pp. 473–485.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    H. Edelsbrunner,Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.CrossRefzbMATHGoogle Scholar
  7. 7.
    L. R. Ford, Jr., and D. R. Fulkerson,Flows in Networks, Princeton University Press, Princeton, NJ, 1962.zbMATHGoogle Scholar
  8. 8.
    A. Fournier and D. Y. Montuno, Triangulating Simple Polygons and Equivalent Problems,ACM Trans. Graphics, vol. 3, no. 2, 1984, pp. 153–174.CrossRefzbMATHGoogle Scholar
  9. 9.
    M. J. Greenberg and J. R. Harper,Algebraic Topology; A First Course, Addison-Wesley, Reading, MA, 1981.zbMATHGoogle Scholar
  10. 10.
    B. Grünbaum and G. C. Shephard,Tiling and Patterns, Freeman, New York, 1986.Google Scholar
  11. 11.
    R. Kenyon, Tiling a Polygon with Parallelograms, Manuscript.Google Scholar
  12. 12.
    T. Ohtsuki, Minimum Partition of Rectilinear Regions,IEEE Internat. Symp. on Circuits and Systems, 1982, pp. 1210–1213.Google Scholar
  13. 13.
    J. O'Rourke,Art Gallery Theorems and Algorithms, Oxford University Press, Oxford, 1987.zbMATHGoogle Scholar
  14. 14.
    R. E. Tarjan and C. J. Van Wyk, AnO(n log logn)-Time Algorithm for Triangulating a Simple Polygon,SIAM J. Comput., vol. 17, no. 1, 1988, pp. 143–178.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    W. P. Thurston, Conway's Tiling Groups,Amer. Math. Monthly, vol. 97, no. 8, 1990, pp. 757–773.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • Sampath Kannan
    • 1
  • Danny Soroker
    • 2
  1. 1.University of ArizonaTucsonUSA
  2. 2.Shell Development CompanyHoustonUSA

Personalised recommendations