Discrete & Computational Geometry

, Volume 7, Issue 2, pp 163–173 | Cite as

Almost tight bounds forɛ-Nets

  • János Komlós
  • János Pach
  • Gerhard Woeginger
Article

Abstract

Given any natural numberd, 0<ɛ<1, letfd(ɛ) denote the smallest integerf such that every range space of Vapnik-Chervonenkis dimensiond has anɛ-net of size at mostf. We solve a problem of Haussler and Welzl by showing that ifd≥2, then
$$d - 2 + \frac{2}{{d + 2}} \leqslant \mathop {\lim }\limits_{\varepsilon \to 0} \frac{{f_d (\varepsilon )}}{{(1/\varepsilon )\log (1/\varepsilon )}} \leqslant d.$$
Further, we prove thatf1(ɛ)=max(2, ⌌ 1/ɛ ⌍−1), and similar bounds are established for some special classes of range spaces of Vapnik-Chervonenkis dimension three.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. K. Agarwal, A deterministic algorithm for partitioning arrangements of lines and its applications,Discrete & Computational Geometry 5, 1990.Google Scholar
  2. 2.
    A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth, Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension,Journal of the Association for Computing Machinery 36, 1989.Google Scholar
  3. 3.
    B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in geometry,Proceedings of the 29th IEEE Foundations of Computer Science, 1988, 539–549.Google Scholar
  4. 4.
    B. Chazelle and E. Welzl, Quasi-optimal range searching and VC-dimensions,Discrete & Computational Geometry 4, 1989, 467–490.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    K. Clarkson, New applications of random sampling in computational geometry,Discrete & Computational Geometry 2, 1987, 195–222.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial complexity bounds for arrangements of curves and surfaces,Discrete & Computational Geometry 5, 1990, 99–160.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    H. Edelsbrunner,Algorithms in Combinatorial Geometry, EATCS Monographs in Theoretical Computer Science, Springer-Verlag, Berlin, 1987.CrossRefMATHGoogle Scholar
  8. 8.
    D. Haussler and E. Welzl,ɛ-Nets and simplex range queries,Discrete & Computational Geometry 2, 1987, 127–151.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    J. Matoušek, Construction ofɛ-nets,Proceedings of the 5th Annual Symposium on Computational Geometry, Saarbrücken, 1989, 1–10.Google Scholar
  10. 10.
    J. Matoušek, R. Seidel, and E. Welzl, How to net a lot with little: smallɛ-nets for disks and halfspaces,Proceedings of the 6th Annual Symposium on Computational Geometry, Berkeley, 1990.Google Scholar
  11. 11.
    J. Pach, Covering the plane with convex polygons,Discrete & Computational Geometry 1, 1986, 73–81.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    N. Sauer, On the density of families of sets,Journal of Combinatorial Theory, Series A 13, 1972, 145–147.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of events to their probabilities,Theory of Probability and Its Applications 16, 1971, 264–280.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • János Komlós
    • 1
  • János Pach
    • 2
    • 3
  • Gerhard Woeginger
    • 4
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA
  2. 2.Mathematical InstituteHungarian Academy of SciencesBudapestHungary
  3. 3.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  4. 4.Institut für MathematikTechnische Universität GrazGrazAustria

Personalised recommendations