Discrete & Computational Geometry

, Volume 7, Issue 1, pp 45–58

Finding minimum areak-gons

  • David Eppstein
  • Mark Overmars
  • Günter Rote
  • Gerhard Woeginger


Given a setP ofn points in the plane and a numberk, we want to find a polygon
with vertices inP of minimum area that satisfies one of the following properties: (1)
is a convexk-gon, (2)
is an empty convexk-gon, or (3)
is the convex hull of exactlyk points ofP. We give algorithms for solving each of these three problems in timeO(kn3). The space complexity isO(n) fork=4 andO(kn2) fork≥5. The algorithms are based on a dynamic programming approach. We generalize this approach to polygons with minimum perimeter, polygons with maximum perimeter or area, polygons containing the maximum or minimum number of points, polygons with minimum weight (for some weights added to vertices), etc., in similar time bounds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aggarwal and J. Wein,Computational Geometry, Lecture Notes for 18.409, MIT Laboratory for Computer Science, 1988.Google Scholar
  2. 2.
    A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications of a matrix-searching algorithm,Algorithmica 2 (1987), 195–208.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Aggarwal, H. Imai, N. Katoh, and S. Suri, Findingk points with minimum diameter and related problems,Proc. 5th ACM Symp. on Computational Geometry, 1989, pp. 283–291.Google Scholar
  4. 4.
    D. Avis and D. Rappaport, Computing the largest empty convex subset of a set of points,Proc. 1st ACM Symp. on Computational Geometry, 1985, pp. 161–167.Google Scholar
  5. 5.
    J. E. Boyce, D. P. Dobkin, R. L. Drysdale, and L. J. Guibas, Finding extremal polygons,SIAM J. Comput. 14 (1985), 134–147.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    D. P. Dobkin, R. L. Drysdale, and L. J. Guibas, Finding smallest polygons, In:Advances in Computing Research, Vol. 1, JAI Press, Greenwich, CT, 1983, pp. 181–214.Google Scholar
  7. 7.
    D. P. Dobkin, H. Edelsbrunner, and M. H. Overmars, Searching for empty convex polygons,Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 224–228.Google Scholar
  8. 8.
    H. Edelsbrunner,Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical. Computer Science, Springer-Verlag, Berlin, 1987.MATHCrossRefGoogle Scholar
  9. 9.
    H. Edelsbrunner and L. J. Guibas, Topologically sweeping in an arrangement,Proc. 18th ACM Symp. on Theory of Computing, 1986, pp. 389–403.Google Scholar
  10. 10.
    H. Edelsbrunner, J. O'Rourke, and R. Seidel, Constructing arrangements of lines and hyperplanes with applications,SIAM J. Comput. 15 (1986), 341–363.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    D. Eppstein, New algorithms for minimum areak-gons,Proc. 3rd ACM/SIAM Symp. on Discrete Algorithms, 1992, to appear.Google Scholar
  12. 12.
    J. D. Horton, Sets with no empty convex 7-gons,Canad. Math. Bull. 26 (1983), 482–484.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. I. Munro and R. J. Ramirez, Reducing space requirements for shortest path problems,Oper. Res. 30 (1982), 1009–1013.MATHCrossRefGoogle Scholar
  14. 14.
    M. H. Overmars, B. Scholten, and I. Vincent, Sets without empty convex 6-gons,Bull. EATCS 37 (1989), 160–160.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • David Eppstein
    • 1
  • Mark Overmars
    • 2
  • Günter Rote
    • 3
  • Gerhard Woeginger
    • 3
  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA
  2. 2.Department of Computer ScienceUtrecht UniversityUtrechtThe Netherlands
  3. 3.Institut für MathematikTechnische Universität GrazGrazAustria

Personalised recommendations