Discrete & Computational Geometry

, Volume 5, Issue 6, pp 575–601 | Cite as

Toughness and Delaunay triangulations

  • Michael B. Dillencourt
Article

Abstract

We show that nondegenerate Delaunay triangulations satisfy a combinatorial property called 1-toughness. A graphG is1-tough if for any setP of vertices,c(G−P)≤|G|, wherec(G−P) is the number of components of the graph obtained by removingP and all attached edges fromG, and |G| is the number of vertices inG. This property arises in the study of Hamiltonian graphs: all Hamiltonian graphs are 1-tough, but not conversely. We also show that all Delaunay triangulationsT satisfy the following closely related property: for any setP of vertices the number of interior components ofT−P is at most |P|−2, where an interior component ofT−P is a component that contains no boundary vertex ofT. These appear to be the first nontrivial properties of a purely combinatorial nature to be established for Delaunay triangulations. We give examples to show that these bounds are best possible and are independent of one another. We also characterize the conditions under which a degenerate Delaunay triangulation can fail to be 1-tough. This characterization leads to a proof that all graphs that can be realized as polytopes inscribed in a sphere are 1-tough. One consequence of the toughness results is that all Delaunay triangulations and all inscribable graphs have perfect matchings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Akl. A note on Euclidean matchings, triangulations, and spanning trees.Journal of Combinatorics, Information and System Sciences,8(3):169–174, 1983.MathSciNetMATHGoogle Scholar
  2. 2.
    P. F. Ash and E. D. Bolker. Recognizing Dirichlet tessellations.Geometriae Dedicata,19(2):175–206, November 1985.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    P. F. Ash and E. D. Bolker. Generalized Dirichlet tesselations.Geometriae Dedicata,20(2):209–243, April 1986.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    C. A. Barefoot, R. Entringer, and H. Swart. Vulnerability in graphs—a comparative survey.Journal of Combinatorial Mathematics and Combinatorial Computing,1:13–22, 1987.MathSciNetMATHGoogle Scholar
  5. 5.
    D. Barnette and E. Jucovič. Hamiltonian circuits on 3-polytopes.Journal of Combinatorial Theory,9(1):54–59, July 1970.CrossRefMATHGoogle Scholar
  6. 6.
    D. Bauer, S. L. Hakimi, and E. Schmeichel. Recognizing tough graphs is NP-hard.Discrete Mathematics, to appear.Google Scholar
  7. 7.
    J. C. Bermond. Hamiltonian graphs. In L. W. Beineke and R. J. Wilson, editors,Selected Topics in Graph Theory, pp. 127–167. Academic Press, London, 1978.Google Scholar
  8. 8.
    J.-D. Boissonnat. Geometric structures for three-dimensional storage representation.ACM Transactions on Graphics,3(4):256–286, October 1984.CrossRefGoogle Scholar
  9. 9.
    J.-D. Boissonnat. Private Communication.Google Scholar
  10. 10.
    J. A. Bondy and U. S. R. Murty.Graph Theory with Applications. North-Holland, New York, 1976.CrossRefMATHGoogle Scholar
  11. 11.
    K. Q. Brown. Voronoi diagrams from convex hulls.Information Processing Letters,9(5):223–228, December 1979.CrossRefMATHGoogle Scholar
  12. 12.
    R. C. Chang and T. C. T. Lee. On the average length of Delaunay triangulations.BIT,24(3):269–273, 1984.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    V. Chvátal. Tough graphs and Hamiltonian circuits.Discrete Mathematics,5(3):215–228, July 1973.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    V. Chvátal. Hamiltonian cycles. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors,The Traveling Salesman Problem, pp. 403–429. Wiley, New York, 1985.Google Scholar
  15. 15.
    H. S. M. Coxeter.Introduction to Geometry, second edition, Wiley, New York, 1969.MATHGoogle Scholar
  16. 16.
    R. W. Dawes and M. G. Rodrigues. Properties of 1-tough graphs.Journal of Combinatorial Mathematics and Combinatorial Computing, to appear.Google Scholar
  17. 17.
    L. De Floriani, B. Falcidieno, C. Pienovi, and G. Nagy. On sorting triangles in a Delaunay tessellation.Algorithmica, to appear.Google Scholar
  18. 18.
    B. Delaunay. Sur la sphère vide.Izvestia Akademia Nauk SSSR, VII Seria, Otdelenie Matematicheskii i Estestvennyka Nauk,7(6):793–800, October 1934.Google Scholar
  19. 19.
    M. B. Dillencourt. Traveling salesman cycles are not always subgraphs of Delaunay triangulations or of minimum weight triangulations.Information Processing Letters,24(5):339–342, March 1987.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    M. B. Dillencourt. A non-Hamiltonian, nondegenerate Delaunay triangulation.Information Processing Letters,25(3):149–151, May 1987.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    M. B. Dillencourt. Graph-Theoretical Properties of Algorithms Involving Delaunay Triangulations. Ph.D. thesis, University of Maryland, College Park, MD, April 1988. Also Computer Science Technical Report CS-TR-2059, University of Maryland, College Park, MD.Google Scholar
  22. 22.
    M. B. Dillencourt. An upper bound on the shortness exponent of inscribable graphs.Journal of Combinatorial Theory, Series B,46(1):66–83, February 1989.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    M. B. Dillencourt. An upper bound on the shortness exponent of 1-tough, maximal planar graphs.Discrete Mathematics, to appear.Google Scholar
  24. 24.
    M. B. Dillencourt. Realizability of Delaunay triangulations.Information Processing Letters,33(6):283–287, February 1990.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as good as complete graphs. InProceedings of the 28th IEEE Symposium on the Foundations of Computer Science, pp. 20–26, Los Angeles, CA, October 1987.Google Scholar
  26. 26.
    H. Edelsbrunner,Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Science, Vol. 10. Springer-Verlag, Berlin, 1987.CrossRefGoogle Scholar
  27. 27.
    H. Edelsbrunner. An acyclicity theorem for cell complexes ind dimensions. InProceedings of the Fifth ACM Symposium on Computational Geometry, pp. 145–151, Saarbrücken, West Germany, June 1989.CrossRefGoogle Scholar
  28. 28.
    H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements.Discrete and Computational Geometry,1(1):25–44, 1986.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    B. Grünbaum.Convex Polytopes. Wiley Interscience, New York, 1967.MATHGoogle Scholar
  30. 30.
    B. Grünbaum and G. C. Shephard. Some problems on polyhedra.Journal of Geometry,29(2):182–190, August 1987.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    V. Kantabutra. Traveling salesman cycles are not always subgraphs of Voronoi duals.Information Processing Letters,16(1):11–12, January 1983.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    J. M. Keil and C. A. Gutwin. The Delaunay triangulation closely approximates the complete Euclidean graph. InProceedings of the 1989 Workshop on Algorithms and Data Structures (WADS '89), pp. 47–56, Ottawa, August 1989. Lecture Notes in Computer Science, Vol. 382. Springer-Verlag, Berlin, 1989.Google Scholar
  33. 33.
    D. G. Kirkpatrick. A note on Delaunay and optimal triangulations.Information Processing Letters,10(3):127–128, April 1980.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    D. T. Lee and F. P. Preparata. Computational geometry—a survey.IEEE Transactions on Computers,33(12):1072–1101, December 1984.MathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Lingas. The greedy and Delaunay triangulations are not bad in the average case.Information Processing Letters,22(1):25–31, January 1986.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    E. L. Lloyd. On triangulations of a set of points in the plane. InProceedings of the Eighteenth Annual IEEE Symposium on the Foundations of Computing, pp. 228–240, Providence, RI, October 1977.Google Scholar
  37. 37.
    G. K. Manacher and A. L. Zobrist. Neither the greedy nor the Delaunay triangulation of a planar point set approximates the optimal triangulation.Information Processing Letters,9(1):31–34, July 1979.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    C. Mathieu. Some problems in computational geometry.Algorithmica,2(1):131–133, 1987.MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    M. H. A. Newman.Elements of the Topology of Plane Sets of Points, second edition. Cambridge University Press, Cambridge, 1951.MATHGoogle Scholar
  40. 40.
    T. Nishizeki. A 1-tough Nonhamiltonian maximal planar graph.Discrete Mathematics,30(3):305–307, June 1980.MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    O. Ore,The Four-Color Problem. Academic Press, New York, 1967.MATHGoogle Scholar
  42. 42.
    J. O'Rourke. The computational geometry column.Computer Graphics,20(5):232–234, October 1986. Also inSIGACT News,18(1):17–19, Summer 1986.Google Scholar
  43. 43.
    J. O'Rourke, H. Booth, and R. Washington. Connect-the-dots: A new heuristic.Computer Vision, Graphics, and Image Processing,39(2):258–266, August 1987.CrossRefMATHGoogle Scholar
  44. 44.
    F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New York, 1985.CrossRefGoogle Scholar
  45. 45.
    M. I. Shamos. Computational Geometry. Ph.D. thesis, Yale University, New Haven, CT, 1978.Google Scholar
  46. 46.
    W. T. Tutte. The factorization of linear graphs.Journal of the London Mathematical Society,22:107–111, 1947.MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    H. Whitney. A theorem on graphs.Annals of Mathematics,32:378–390, 1931.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Michael B. Dillencourt
    • 1
  1. 1.Center for Automation Research and Institute of Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations