Discrete & Computational Geometry

, Volume 5, Issue 3, pp 243–254 | Cite as

A new duality result concerning voronoi diagrams

  • Franz Aurenhammer


A new duality between order-k Voronoi diagrams inEd and convex hulls inEd+1 is established. It implies a reasonably simple algorithm for computing the order-k diagram forn points in the plane inO(k2n logn) time and optimalO(k(n−k)) space.


Convex Hull Voronoi Diagram Discrete Comput Geom Convex Polyhedron Cell Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aurenhammer, F. Power diagrams: properties, algorithms and applications.SIAM J. Comput. 16 (1987), 78–96.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aurenhammer, F. A criterion for the affine equivalence of cell complexes inR d and convex polyhedra inR d+1.Discrete Comput. Geom. 2 (1987), 49–64.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brown, K. Q. Voronoi diagrams from convex hulls.Inform. Process. Lett. 9 (1979), 223–228.CrossRefzbMATHGoogle Scholar
  4. 4.
    Chazelle, B., Edelsbrunner, H. An improved algorithm for constructingkth-order Voronoi diagrams.IEEE Trans. Comput. 36 (11) (1987), 1349–1354.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Edelsbrunner, H. Edge-skeletons in arrangements with applications.Algorithmica 1 (1986), 93–109.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Edelsbrunner, H., O'Rourke, J., Seidel, R. Constructing arrangements of lines and hyperplanes with applications.SIAM J. Comput. 15 (1986), 341–363.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lee, D. T. Onk-nearest neighbor Voronoi diagrams in the plane.IEEE Trans. Comput. 31 (1982), 478–487.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Preparata, F. P., Hong, S. J. Convex hulls of finite sets of points in two and three dimensions.Comm. ACM (1977), 87–93.Google Scholar
  9. 9.
    Seidel, R. A convex hull algorithm optimal for point-sets in even dimensions. M.Sc. Thesis, Rep. 81-14, Dept. Comput. Sci., University of British Columbia, Vancouver (1981).Google Scholar
  10. 10.
    Seidel, R. Constructing higher-dimensional convex hulls at logarithmic cost per face.Proc. 18th ACM Symp. STOC (1986), 404–413.Google Scholar
  11. 11.
    Shamos, M. I., Hoey, D. Closest-point problems.Proc. 16th. Ann. IEEE Symp. FOCS (1975), 151–162.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Franz Aurenhammer
    • 1
  1. 1.Institutes for Information ProcessingTechnical University of Graz and Austrian Computer SocietyGrazAustria

Personalised recommendations