Advertisement

Discrete & Computational Geometry

, Volume 5, Issue 2, pp 99–160 | Cite as

Combinatorial complexity bounds for arrangements of curves and spheres

  • Kenneth L. Clarkson
  • Herbert Edelsbrunner
  • Leonidas J. Guibas
  • Micha Sharir
  • Emo Welzl
Article

Abstract

We present upper and lower bounds for extremal problems defined for arrangements of lines, circles, spheres, and alike. For example, we prove that the maximum number of edges boundingm cells in an arrangement ofn lines is Θ(m2/3n2/3 +n), and that it isO(m2/3n2/3β(n) +n) forn unit-circles, whereβ(n) (and laterβ(m, n)) is a function that depends on the inverse of Ackermann's function and grows extremely slowly. If we replace unit-circles by circles of arbitrary radii the upper bound goes up toO(m3/5n4/5β(n) +n). The same bounds (without theβ(n)-terms) hold for the maximum sum of degrees ofm vertices. In the case of vertex degrees in arrangements of lines and of unit-circles our bounds match previous results, but our proofs are considerably simpler than the previous ones. The maximum sum of degrees ofm vertices in an arrangement ofn spheres in three dimensions isO(m4/7n9/7β(m, n) +n2), in general, andO(m3/4n3/4β(m, n) +n) if no three spheres intersect in a common circle. The latter bound implies that the maximum number of unit-distances amongm points in three dimensions isO(m3/2β(m)) which improves the best previous upper bound on this problem. Applications of our results to other distance problems are also given.

Keywords

Voronoi Diagram Vertical Side Line Arrangement Sample Arrangement Sample Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    P. Agarwal, M. Sharir, and P. Shor. Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences.J. Combin. Theory Ser. A, to appear.Google Scholar
  2. [2]
    D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic decomposition: I. The basic algorithm.SIAM J. Comput. 13 (1984), 865–877.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    B. Aronov and M. Sharir. Triangles in space or building (and analyzing) castles in the air. InProc 4th Ann. Sympos. Comput. Geom., 1988, pp. 381–391.Google Scholar
  4. [4]
    D. Avis, P. Erdös, and J. Pach. Repeated distances in space.Graphs Combin. 4 (1988), 207–217.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Beck. On the lattice property of the plane and some problems of Dirac, Motzkin and Erdös in combinatorial geometry.Combinatorica 3 (1983). 281–297.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. J. Canham. A theorem on arrangements of lines in the plane.Israel J. Math. 7 (1969), 393–397.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry. InProc. 29th IEEE Sympos. Found Comput. Sci., 1988, pp. 539–549.Google Scholar
  8. [8]
    B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality.BIT 25 (1985), 76–90.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    B. Chazelle and L. Palios. Triangulating a non-convex polytope. InProc. 5th Ann. Sympos. Comput. Geom., 1989, pp. 393–400.Google Scholar
  10. [10]
    F. R. K. Chung. Sphere-and-point incidence relations in high dimensions with applications to unit distances and furthest-neighbor pairs.Discrete Comput. Geom. 4 (1988), 183–190.CrossRefGoogle Scholar
  11. [11]
    K. L. Clarkson. New applications of random sampling in computational geometry.Discrete Comput. Geom. 2 (1987), 195–222.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.Discrete Comput. Geom. 4 (1989), 387–421.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    G. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decompositions. InProceedings of the 2nd GI Conference on Automata Theory and Formal Languages. Lecture Notes in Computer Science, Vol.35. Springer-Verlag, Berlin, 1975, pp. 134–183.Google Scholar
  14. [14]
    D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional subdivisions. InProc. 3rd Ann. Sympos. Comput. Geom., 1987, pp. 86–99.Google Scholar
  15. [15]
    H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, 1987.CrossRefzbMATHGoogle Scholar
  16. [16]
    H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement.J. Comput. System Sci. 38 (1989), 165–194.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H. Edelsbrunner, L. J. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink, and E. Welzl. Implicitly representing arrangements of lines or segments.Discrete Comput. Geom. 4 (1989), 433–466.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    H. Edelsbrunner, L. J. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir. Arrangements of curves in the plane—topology, combinatorics, and algorithms.Theoret. Comput. Sci., to appear.Google Scholar
  19. [19]
    H. Edelsbrunner, L. J. Guibas, and M. Sharir. The complexity of many cells in arrangements of planes and related problems.Discrete Comput. Geom., this issue, 197–216.Google Scholar
  20. [20]
    H. Edelsbrunner, L. J. Guibas, and M. Sharir. The complexity and construction of many faces in arrangements of lines and of segments.Discrete Comput. Geom., this issue, 161–196.Google Scholar
  21. [21]
    H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with applications.SIAM J. Comput. 15 (1986), 341–363.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    H. Edelsbrunner and S. S. Skiena. On the number of furthest neighbour pairs in a points set.Amer. Math. Monthly,96 (1989), 614–618.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    H. Edelsbrunner and E. Welzl. On the maximal number of edges of many faces in arrangements.J. Combin. Theory Ser. A 41 (1986), 159–166.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    P. Erdős. On sets of distances ofn points.Amer. Math. Monthly 53 (1946), 248–250.MathSciNetCrossRefGoogle Scholar
  25. [25]
    P. Erdős. On sets of distances ofn points in Euclidean space.Magyar Tud. Akad. Mat. Kutaló Int. Kozl. 5 (1960), 165–169.Google Scholar
  26. [26]
    P. Erdős. On extremal problems of graphs and generalized graphs.Israel J. Math. 2 (1964), 183–190.MathSciNetCrossRefGoogle Scholar
  27. [27]
    P. Erdős. On some problems of elementary and combinatorial geometry.Ann. Mat. Pura Appl. (IV) 103 (1975), 99–108.CrossRefGoogle Scholar
  28. [28]
    P. Erdős. Extremal problems in number theory, combinatorics and geometry. InProc. ICM, 1983.Google Scholar
  29. [29]
    P. Erdős, D. Hickerson, and J. Pach. A problem of Leo Moser about repeated distances on the sphere.Amer. Math. Monthly, to appear.Google Scholar
  30. [30]
    W. Feller.An Introduction to Probability Theory and Its Applications, Vol. II, Second edition. Wiley, New York, 1971.zbMATHGoogle Scholar
  31. [31]
    S. J. Fortune. A sweepline algorithm for Voronoi diagrams.Algorithmica 2 (1987), 153–174.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J. E. Goodman and R. Pollack. Proof of Grünbaum's conjecture of the stretchability of certain arrangements of pseudolines.J. Combin. Theory Ser. A 29 (1980), 385–390.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    B. Grünbaum. A proof of Vázsonyi's conjecture.Bull. Res. Council Israel Sect. A 6 (1956), 77–78.MathSciNetGoogle Scholar
  34. [34]
    B. Grünbaum.Convex Polytopes. Wiley, Chichester, 1967.zbMATHGoogle Scholar
  35. [35]
    L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams.ACM Trans. Graphics 4 (1985), 74–123.CrossRefzbMATHGoogle Scholar
  36. [36]
    G. H. Hardy, J. E. Littlewood and G. Pólya.Inequalities, Second edition. Cambridge, 1952.Google Scholar
  37. [37]
    S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes.Combinatorica 6 (1986), 151–177.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    D. Haussler and E. Welzl.ɛ-nets and simplex range queries.Discrete Comput. Geom. 2 (1987), 127–151.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    A. Heppes. Beweis einer Vermutung von A. Vázsonyi.Acta Math. Acad. Sci. Hungar. 7 (1956), 463–466.MathSciNetCrossRefGoogle Scholar
  40. [40]
    S. Józsa and E. Szemerédi. The number of unit distances in the plane: Infinite and finite sets.Colloq. Math. Soc. János Bolyai 10 (1975), 939–950.Google Scholar
  41. [41]
    K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles.Discrete Comput. Geom. 1 (1986), 59–71.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    D. E. Knuth.Fundamental Algorithms: The Art of Computer Programming I. Addison-Wesley, Reading, Mass., 1968.zbMATHGoogle Scholar
  43. [43]
    D. E. Knuth.Seminumerical Algorithms: The Art of Computer Programming II. Addison-Wesley, Reading, Mass., 1969.Google Scholar
  44. [44]
    D. E. Knuth.Sorting and Searching: The Art of Computer Programming III. Addison-Wesley, Reading, Mass., 1973.Google Scholar
  45. [45]
    T. Kövári, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz.Colloq. Math. 3 (1954), 50–57.zbMATHGoogle Scholar
  46. [46]
    F. Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade.Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig 78 (1926), 256–267.Google Scholar
  47. [47]
    M. Mäntylä.An Introduction to Solid Modeling. Computer Science Press, Rockville, Md., 1988.Google Scholar
  48. [48]
    J. Matoušek. Construction ofɛ-nets. InProc. 5th Ann, Sympos. Comput. Geom., 1989, pp. 1–10.Google Scholar
  49. [49]
    W. O. J. Moser and J. Pach.Research Problems in Discrete Geometry. Academic Press, New York, to appear.Google Scholar
  50. [50]
    F. P. Preparata and M. I. Shamos.Computational Geometry—an Introduction. Springer-Verlag, New York, 1985.Google Scholar
  51. [51]
    G. Purdy and P. Erdos. Some extremel problems in combinatorial geometry. Manuscript, 1987.Google Scholar
  52. [52]
    I. Reiman. Über ein Problem von K. Zarankiewicz.Acta Math. Hungar. Acad. Sci. 9 (1958), 269–273.MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    J. T. Schwartz and M. Sharir. On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds.Adv. in Appl. Math. 4 (1983), 298–351.MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    M. Sharir. Davenport-Schinzel sequences and their geometric applications. InTheoretical Foundations of Computer Graphics and CAD, R. A. Earnshaw (ed.), NATO ASI Series, Vol. F-40, Springer-Verlag, Berlin, 1988, pp. 253–278.CrossRefGoogle Scholar
  55. [55]
    J. Spencer, E. Szemerédi, and W. T. Trotter, Jr. Unit distances in the Euclidean plane. InGraph Theory and Combinatorics, Academic Press, London, 1984, pp. 293–303.Google Scholar
  56. [56]
    S. Straszewicz. Sur un problème geometrique de P. Erdős.Bull. Acad. Polon. Sci. Cl. III 5 (1957), 39–40.MathSciNetzbMATHGoogle Scholar
  57. [57]
    E. Szemerédi and W. T. Trotter, Jr. Extremal problems in discrete geometry.Combinatorica 3 (1983), 381–392.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Kenneth L. Clarkson
    • 1
  • Herbert Edelsbrunner
    • 2
  • Leonidas J. Guibas
    • 3
    • 4
  • Micha Sharir
    • 5
    • 6
  • Emo Welzl
    • 7
  1. 1.AT&T Bell LaboratoriesMurray HillUSA
  2. 2.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.DEC Systems Research CenterPalo AltoUSA
  4. 4.Computer Science DepartmentStanford UniversityUSA
  5. 5.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  6. 6.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  7. 7.Fachbereich MathematikFreie Universität BerlinBerlin 33Germany

Personalised recommendations