Discrete & Computational Geometry

, Volume 4, Issue 6, pp 611–626 | Cite as

Computing the geodesic center of a simple polygon

  • R. Pollack
  • M. Sharir
  • G. Rote


The geodesic center of a simple polygon is a point inside the polygon which minimizes the maximum internal distance to any point in the polygon. We present an algorithm which calculates the geodesic center of a simple polygon withn vertices in timeO(n logn).


Short Path Facility Location Problem Simple Polygon Geodesic Triangle Link Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [AT]
    Asano, T., and Toussaint, G. T. (1985). Computing the geodesic center of a simple polygon, Technical Report SOCS-85.32, McGill University.Google Scholar
  2. [Ch]
    Chazelle, B. (1982). A theorem on polygon cutting with applications,Proc. 23rd IEEE Symp. on Foundations of Computer Science, pp. 339–349.Google Scholar
  3. [Dy1]
    Dyer, M. E. (1984). Linear-time algorithms for two- and three-variable linear programs,SIAM J. Comput. 13, pp. 31–45.MATHMathSciNetCrossRefGoogle Scholar
  4. [Dy2]
    Dyer, M. E. (1986). On a multidimensional search technique and its applications to the Euclidean one-center problem,SIAM J. Computing 15, pp. 725–738.MATHMathSciNetCrossRefGoogle Scholar
  5. [GJPT]
    Garey, M. R., Johnson, D. S., Preparata, F. P., and Tarjan, R. E. (1978). Triangulating a simple polygon,Inform. Process. Lett. 7, pp. 175–180.MATHMathSciNetCrossRefGoogle Scholar
  6. [Gea]
    Guibas, L., Hershberger, J., Leven, D., Sharir, M., and Tarjan, R. E. (1987). Linear-time algorithms for visibility and shortest path problems inside a triangulated simple polygon,Algorithmica 2, pp. 209–233.MATHMathSciNetCrossRefGoogle Scholar
  7. [LP]
    Lee, D. T., and Preparata, F. P. (1984). Euclidean shortest paths in the presence of rectilinear barriers,Networks 14(3), pp. 393–410.MATHMathSciNetCrossRefGoogle Scholar
  8. [Lea]
    Lenhart, W., Pollack, R., Sack, J., Seidel, R., Sharir, M., Suri, S., Toussaint, G. T., Yap, C., and Whitesides, S. (1987). Computing the link center of a simple polygon,Proc. 3rd ACM Symp. on Computational Geometry, pp. 1–10.Google Scholar
  9. [Me1]
    Megiddo, N. (1983). Linear-time algorithms for linear programming in R3 and related problems,SIAM J. Comput. 12, pp. 759–776.MATHMathSciNetCrossRefGoogle Scholar
  10. [Me2]
    Megiddo, N. (1983). Applying parallel computation algorithms in the design of serial algorithms,J. Assoc. Comput. Mach. 30, pp. 852–866.MATHMathSciNetCrossRefGoogle Scholar
  11. [Me3]
    Megiddo, N. (1984). Linear programming in linear time when the dimension is fixed,J. Assoc. Comput. Mach. 31, pp. 114–127.MATHMathSciNetCrossRefGoogle Scholar
  12. [Me4]
    Megiddo, N. (1989). On the ball spanned by balls,Discrete Comput. Geom., this issue, pp. 605–610.Google Scholar
  13. [PS]
    Pollack, R., and Sharir, M. (1986). Computing the geodesic center of a simple polygon, Technical Report 231, Computer Science Department, Courant Institute, New York University, September 1986.Google Scholar
  14. [Su1]
    Suri, S. (1986). Computing the geodesic diameter of a simple polygon, Technical Report JHU/EECS-86/08, Department of Electrical Engineering and Computer Science, Johns Hopkins University.Google Scholar
  15. [Su2]
    Suri, S. (1986). Polygon partitioning techniques for link distance problems, Technical Report, Department of Electrical Engineering and Computer Science, Johns Hopkins University.Google Scholar
  16. [TV]
    Tarjan, R. E., and Van Wyk, C. J. (1988). AnO(n log logn)-time algorithm for triangulating simple polygons,SIAM J. Comput. 17, pp. 143–178.MATHMathSciNetCrossRefGoogle Scholar
  17. [Ze]
    Zemel, E. (1984). AnO(n) algorithm for the linear multiple choice knapsack problem and related problems,Inform. Process. Lett. 18, pp. 123–128.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • R. Pollack
    • 1
  • M. Sharir
    • 1
    • 2
  • G. Rote
    • 3
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  3. 3.Institut für MathematikTechnische Universität GrazAustria

Personalised recommendations