Discrete & Computational Geometry

, Volume 4, Issue 5, pp 467–489 | Cite as

Quasi-optimal range searching in spaces of finite VC-dimension

  • Bernard Chazelle
  • Emo Welzl


The range-searching problems that allow efficient partition trees are characterized as those defined by range spaces of finite Vapnik-Chervonenkis dimension. More generally, these problems are shown to be the only ones that admit linear-size solutions with sublinear query time in the arithmetic model. The proof rests on a characterization of spanning trees with a low stabbing number. We use probabilistic arguments to treat the general case, but we are able to use geometric techniques to handle the most common range-searching problems, such as simplex and spherical range search. We prove that any set ofn points inE d admits a spanning tree which cannot be cut by any hyperplane (or hypersphere) through more than roughlyn 1−1/d edges. This result yields quasi-optimal solutions to simplex range searching in the arithmetic model of computation. We also look at polygon, disk, and tetrahedron range searching on a random access machine. Givenn points inE2, we derive a data structure of sizeO(n logn) for counting how many points fall inside a query convexk-gon (for arbitrary values ofk). The query time isO(√kn logn). Ifk is fixed once and for all (as in triangular range searching), then the storage requirement drops toO(n). We also describe anO(n logn)-size data structure for counting how many points fall inside a query circle inO(√n log2n) query time. Finally, we present anO(n logn)-size data structure for counting how many points fall inside a query tetrahedron in 3-space inO(n2/3 log2n) query time. All the algorithms are optimal within polylogarithmic factors. In all cases, the preprocessing can be done in polynomial time. Furthermore, the algorithms can also handle reporting within the same complexity (adding the size of the output as a linear term to the query time).


Span Tree Query Time Range Space Partition Tree Cumulative Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alon, N., Haussler, D., Welzl, E., Wöginger, G. Partitioning and geometric embedding of range spaces of finite Vapnik-Chervonenkis dimension,Proc. 3rd Ann. ACM Symp. Comput. Geom. (1987), 331–340.Google Scholar
  2. 2.
    Assouad, P. Densité et dimension,Ann. Inst. Fourier (Grenoble) 33 (1983), 233–282.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Chazelle, B. Polytope range searching and integral geometry,Proc. 28th Ann. IEEE Symp. Found. Comput. Sci. (1987), 1–10. To appear inJ. Amer. Math. Soc. Google Scholar
  4. 4.
    Chazelle, B., Guibas, L. J. Visibility and intersection problems in plane geometry,Proc. 1st Ann. ACM Symp. Comput. Geom. (1985), 135–146. To appear inDiscrete Comput. Geom. Google Scholar
  5. 5.
    Dobkin, D. P., Kirkpatrick, D. G. Fast detection of polyhedral intersection,Theoret. Comput. Sci. 27 (1983), 241–253.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dudley, R. M. Central limit theorems for empirical measures,Ann. Probab. 6 (1978), 899–929.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Edelsbrunner, H.Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.zbMATHCrossRefGoogle Scholar
  8. 8.
    Edelsbrunner, H., Guibas, L. J., Hershberger, J., Seidel, R., Sharir, M., Snoeyink, J., Welzl, E. Implicitly representing arrangements of lines or segments.Proc. 4th Ann. ACM Symp. Comput. Geom. (1988), 56–69.Google Scholar
  9. 9.
    Edelsbrunner, H., Welzl, E. Halfplanar range search in linear space andO(n 0.695) query time,Inform. Process. Lett. 23 (1986), 289–293.zbMATHCrossRefGoogle Scholar
  10. 10.
    Fredman, M. L. Lower bounds on the complexity of some optimal data structures,SIAM J. Comput. 10 (1981), 1–10.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Haussler, D., Welzl, E. Epsilon-nets and simplex range queries,Discrete Comput. Geom. 2 (1987), 127–151.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Matoušek, J. Spanning trees with low stabbing numbers, manuscript, 1988.Google Scholar
  13. 13.
    Mehlhorn, K.Data Structures and Algorithms 3: Multidimensional Searching and Computational Geometry, Springer-Verlag, Heidelberg, 1984.CrossRefGoogle Scholar
  14. 14.
    Monier, L. Combinatorial solutions of multidimensional divide-and-conquer recurrences,J. Algorithms 1 (1980), 60–74.zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Preparata, F. P., Shamos, M. I.Computational Geometry, Springer-Verlag, New York, 1985.CrossRefGoogle Scholar
  16. 16.
    Sauer, N. On the density of families of sets,J. Combin. Theory Ser. A 13 (1972), 145–147.zbMATHCrossRefGoogle Scholar
  17. 17.
    Tarjan, R. E. Efficiency of a good but not linear set union algorithm,J. Assoc. Comput. Geom. 22 (1975), 215–225.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Vapnik, V. N., Chervonenkis, A. Ya. On the uniform convergence of relative frequencies of events to their probabilities,Theory Probab. Appl. 16 (1971), 264–280.zbMATHCrossRefGoogle Scholar
  19. 19.
    Welzl, E., Wöginger, G. On shatter functions of range spaces, manuscript, 1987.Google Scholar
  20. 20.
    Willard, D. E. Polygon retrieval,SIAM J. Comput. 11 (1982), 149–165.zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Yao, A. C. Space-time tradeoff for answering range queries,Proc. 14th Ann. ACM Symp. Theory Comput. (1982), 128–136.Google Scholar
  22. 22.
    Yao, A. C. On the complexity of maintaining partial sums,SIAM J. Comput. 14 (1985), 277–288.zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Yao, A. C., Yao, F. F. A general approach tod-dimensional geometric queries,Proc. 17th Ann. ACM Symp. Theory Comput. (1985), 163–168.Google Scholar
  24. 24.
    Yao, F. F. A 3-space partition and its applications.Proc. 15th Ann. ACM Symp. Theory Comput. (1983), 258–263.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Bernard Chazelle
    • 1
  • Emo Welzl
    • 2
  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsFree University of BerlinBerlin 33Federal Republic of Germany

Personalised recommendations