Discrete & Computational Geometry

, Volume 4, Issue 5, pp 387–421 | Cite as

Applications of random sampling in computational geometry, II

  • Kenneth L. Clarkson
  • Peter W. Shor
Article

Abstract

We use random sampling for several new geometric algorithms. The algorithms are “Las Vegas,” and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric algorithms. These bounds show that random subsets can be used optimally for divide-and-conquer, and also give bounds for a simple, general technique for building geometric structures incrementally. One new algorithm reports all the intersecting pairs of a set of line segments in the plane, and requiresO(A+n logn) expected time, whereA is the number of intersecting pairs reported. The algorithm requiresO(n) space in the worst case. Another algorithm computes the convex hull ofn points inEd inO(n logn) expected time ford=3, andO(n[d/2]) expected time ford>3. The algorithm also gives fast expected times for random input points. Another algorithm computes the diameter of a set ofn points inE3 inO(n logn) expected time, and on the way computes the intersection ofn unit balls inE3. We show thatO(n logA) expected time suffices to compute the convex hull ofn points inE3, whereA is the number of input points on the surface of the hull. Algorithms for halfspace range reporting are also given. In addition, we give asymptotically tight bounds for (≤k)-sets, which are certain halfspace partitions of point sets, and give a simple proof of Lee's bounds for high-order Voronoi diagrams.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. K. Agarwal. An efficient deterministic algorithm for partitioning arrangements of lines and its applications. InProceedings of the Fifth Symposium on Computational Geometry, pages 11–22, 1989.Google Scholar
  2. 2.
    A. Aggarwal. Personal communication.Google Scholar
  3. 3.
    N. Alon and E. Györi. The number of small semispaces of a finite set of points in the plane.J. Combin. Theory Ser. A, 41:154–157, 1986.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    N. Alon, D. Haussler, and E. Welzl. Partitioning and geometric embedding of range spaces of finite Vapnik-Chervonenkis dimension. InProceedings of the Third Symposium on Computational Geometry, pages 331–340, 1987.Google Scholar
  5. 5.
    B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. InProceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, pages 590–600, 1988.Google Scholar
  6. 6.
    B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality.BIT, 25:76–90, 1985.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    B. Chazelle and F. P. Preparata. Halfspace range search: an algorithmic application ofk-sets.Discrete Comput. Geom., 1:83–93, 1986.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    B. Chazelle and E. Welzl. Range searching and VC-dimension: a characterization of efficiency. Technical Report B-88-09, Freie Universität Berlin, Institut für Mathematik III, Arnimallee 2-6, 1000 Berlin 33, 1989.Google Scholar
  9. 9.
    L. P. Chew. Building Voronoi diagrams for convex polygons in linear expected time. Unpublished manuscript, 1986.Google Scholar
  10. 10.
    K. L. Clarkson. A probabilistic algorithm for the post office problem. InProceedings of the 17th Annual SIGACT Symposium, pages 175–184, 1985.Google Scholar
  11. 11.
    K. L. Clarkson. New applications of random sampling in computational geometry.Discrete Comput. Geom., 2:195–222, 1987.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in computational geometry. InProceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, pages 539–549, 1988.Google Scholar
  13. 13.
    K. L. Clarkson. A Las Vegas algorithm for linear programming when the dimension is small. InProceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, pages 452–456, 1988. Revised version: Las Vegas algorithms for linear and integer programming when the dimension is small (preprint).Google Scholar
  14. 14.
    K. L. Clarkson. Applications of random sampling in computational geometry, II. InProceedings of the Fourth Symposium on Computational Geometry, pages 1–11, 1988.Google Scholar
  15. 15.
    K. L. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl. Combinatorial complexity bounds for arrangements of curves and surfaces. InProceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, pages 568–579, 1988.Google Scholar
  16. 16.
    K. L. Clarkson and P. W. Shor. Algorithms for diametral pairs and convex hulls that are optimal, randomized, and incremental. InProceedings of the Fourth Symposium on Computational Geometry, pages 12–17, 1988.Google Scholar
  17. 17.
    K. L. Clarkson, R. E. Tarjan, and C. J. Van Wyk. A fast Las Vegas algorithm for triangulating a simple polygon.Discrete Comput. Geom., this issue, pages 423–432.Google Scholar
  18. 18.
    R. Cole, M. Sharir, and C. Yap. Onk-hulls and related problems.SIAM J. Comput., 16:61–77, 1987.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    H. Edelsbrunner. Personal communication.Google Scholar
  20. 20.
    H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, New York, 1987.CrossRefMATHGoogle Scholar
  21. 21.
    H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane.IEEE Trans. Inform. Theory, 29:551–559, 1983.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. InProceedings of the Fourth Symposium on Computational Geometry, pages 118–113, 1988.Google Scholar
  23. 23.
    H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with applications.SIAM J. Comput., 15:341–363, 1986.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    P. Erdös and J. Spencer.Probabilistic Methods in Combinatorics. Academic Press, New York, 1974.MATHGoogle Scholar
  25. 25.
    J. E. Goodman and R. E. Pollack. On the number ofk-subsets of a set ofn points in the plane.J. Combin. Theory Ser. A, 36:101–104, 1984.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    D. H. Greene and D. E. Knuth.Mathematics for the Analysis of Algorithms. Birkhäuser, Boston, 1981.MATHGoogle Scholar
  27. 27.
    L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams.ACM Trans. Graphics, 4:75–123, 1985.CrossRefGoogle Scholar
  28. 28.
    D. Haussler and E. Welzl. Epsilon-nets and simplex range queries.Discrete Comput. Geom., 2:127–151, 1987.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    A. Heppes. Beweis einer Vermutung von A. Vázsonyi.Acta Math. Acad. Sci. Hungar., 7:463–466, 1956.MathSciNetCrossRefGoogle Scholar
  30. 30.
    C. A. R. Hoare, Quicksort.Comput. J., 5:10–15, 1962.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm?SIAM J. Comput., 15:287–299, 1986.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    J. Matoušek. Construction of ɛ-nets. InProceedings of the Fifth Symposium on Computational Geometry, pages 1–10, 1989.Google Scholar
  33. 33.
    N. Megiddo. Linear programming in linear time when the dimension is fixed.J. Assoc. Comput. Mach., 31:114–127, 1984.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra.Theoret. Comput. Sci., 7:217–236, 1978.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    K. Mulmuley. A fast planar partition algorithm: part I. InProceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, pages 580–589, 1988.Google Scholar
  36. 36.
    F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three dimensions.Comm. ACM, 20:87–93, 1977.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New York, 1985.CrossRefGoogle Scholar
  38. 38.
    J. Reif and S. Sen. Optimal parallel algorithms for computational geometry. InProceedings of the 16th International Conference on Parallel Processing, 1987.Google Scholar
  39. 39.
    J. Reif and S. Sen. Polling: a new randomized sampling technique for computational geometry. InProceedings of the 21st Annual SIGACT Symposium, pages 394–404, 1989.Google Scholar
  40. 40.
    R. Seidel. A convex hull algorithm optimal for point sets in even dimensions. Technical Report 81/14, Dept. Computer Science, University of British Columbia, 1981.Google Scholar
  41. 41.
    R. Seidel. Constructing higher dimensional convex hulls at logarithmic cost per face. InProceedings of the 18th Annual SIGACT Symposium, pages 404–413, 1986.Google Scholar
  42. 42.
    E. Welzl. More onk-sets of finite sets in the plane.Discrete Comput. Geom., 1:95–100, 1986.MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    E. Welzl. Partition trees for triangle counting and other range searching problems. InProceedings of the Fourth Symposium on Computational Geometry, pages 23–33, 1988.Google Scholar
  44. 44.
    C. K. Yap. A geometric consistency theorem for a symbolic perturbation scheme. InProceedings of the Fourth Symposium on Computational Geometry, pages 134–142, 1988.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Kenneth L. Clarkson
    • 1
  • Peter W. Shor
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations