Discrete & Computational Geometry

, Volume 1, Issue 1, pp 25–44 | Cite as

Voronoi diagrams and arrangements

  • Herbert Edelsbrunner
  • Raimund Seidel
Article

Abstract

We propose a uniform and general framework for defining and dealing with Voronoi diagrams. In this framework a Voronoi diagram is a partition of a domainD induced by a finite number of real valued functions onD. Valuable insight can be gained when one considers how these real valued functions partitionD ×R. With this view it turns out that the standard Euclidean Voronoi diagram of point sets inR d along with its order-k generalizations are intimately related to certain arrangements of hyperplanes. This fact can be used to obtain new Voronoi diagram algorithms. We also discuss how the formalism of arrangements can be used to solve certain intersection and union problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Aurenhammer, Power diagrams: Properties, algorithms and applications, Rep. F120, IIG, Tech. Univ. Graz, Austria, 1983.Google Scholar
  2. 2.
    F. P. Ash and E. D. Boler, Generalized Dirichlet tesselations, to be published.Google Scholar
  3. 3.
    F. Aurenhammer and H. Edelsbrunner, An optimal algorithm for constructing the weighted Voronoi diagram in the plane, Pattern Recognition 17 (1984), 251–257.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    B. Bhattacharya, An algorithm for computing orderk Voronoi diagrams in the plane, CS Dept. Tech. Rep. TR. 83-9, Simon Fraser Univ., Burnaby B.C., 1983.Google Scholar
  5. 5.
    A. Bowyer, Computing Dirichlet tesselations, The Computer Journal 24 (1981), 162–166.MathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Q. Brown, Fast intersection of half spaces, CS Dept. Rep. CMU-CS-78-129, CMU, Pittsburgh PA, 1978.Google Scholar
  7. 7.
    K. Q. Brown, Voronoi diagrams from convex hulls, Info. Proc. Let. 9 (1979), 223–228.CrossRefGoogle Scholar
  8. 8.
    K. Q. Brown, Geometric transforms for fast geometric algorithms, Ph.D. thesis, CS Dept. Rep. CMU-CS-80-101, CMU, Pittsburgh PA, 1980.Google Scholar
  9. 9.
    L. P. Chew and R. L. Drysdale, III, Voronoi diagrams based on convex distance functions, Proc. of the ACM Symp. on Computational Geometry, 1985, 235–244.Google Scholar
  10. 10.
    R. Cole and C. K. Yap, Geometric retrieval problems, Proc. of the 24th IEEE Symp. on Foundations of Computer Science, 1983, 112–121.Google Scholar
  11. 11.
    F. Dehne, An optimal algorithm to construct all Voronoi diagrams fork nearest neighbor searching in the Euclidean plane, Proc. of the 20th Annual Allerton Conf. on Communication, Control, and Computing, 1982.Google Scholar
  12. 12.
    R. L. Drysdale, III, Generalized Voronoi diagrams and geometric searching, Ph.D. thesis, CS Dept. Rep. STAN-CS-79-705, Stanford Univ., Stanford, CA, 1979.Google Scholar
  13. 13.
    H. Edelsbrunner, Arrangements and Geometric Computations, forthcoming book.Google Scholar
  14. 14.
    H. Edelsbrunner, J. O'Rourke, and R. Seidel, Constructing arrangements of lines and hyperplanes with applications, Proc. 24th Symp. on Foundations of Computer Science, 1983, 83–91 (to appear in SIAM J. Computing).Google Scholar
  15. 15.
    H. Edelsbrunner and E. Welzl, On the number of line-separations of a finite set in the plane, Rep. F97, IIG, Tech. Univ. Graz, Austria, 1982 (to appear in J. Combin. Theory, Ser. A).Google Scholar
  16. 16.
    P. Erdös, L. Lovasz, A. Simmons, and E. G. Straus, Dissection graphs of planar point sets, in A Survey of Combinatorial Theory, J. N. Srivastava et al., eds., North-Holland, Amsterdam, 1973.Google Scholar
  17. 17.
    B. Grünbaum, Arrangements of hyperplanes, Conf. Numerantium III, Louisiana Conf. on Comb., Graph Theory and Computing, 1971, 41–106.Google Scholar
  18. 18.
    B. Grünbaum, Arrangements and spreads, Reg. Conf. Series in Math., AMS, Providence, 1972.Google Scholar
  19. 19.
    H. Imai, M. Iri, and K. Murota, Voronoi diagrams in the Laguerre geometry and its application, SIAM J. Computing, to appear.Google Scholar
  20. 20.
    D. G. Kirkpatrick, Efficient computation of continuous skeletons, Proc. of the 20th IEEE Symp. on Foundations of Computer Science, 1979, 18–27.Google Scholar
  21. 21.
    D. T. Lee, On findingk-nearest neighbors in the plane, M.S. thesis, Coordinated Science Lab., Rep. R-728, Univ. of Illinois, Urbana Ill., 1976.Google Scholar
  22. 22.
    D. T. Lee, Two dimensional Voronoi diagrams in theL p-metric, J. ACM, Oct. 604–618 (1980).Google Scholar
  23. 23.
    D. T. Lee and R. L. Drysdale, III, Generalized Voronoi diagrams in the plane, SIAM J. Computing, 10 (1981), 73–87.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    D. T. Lee and C. K. Wong, Voronoi diagrams inL 1- (L -) metrics with 2-dimensional storage applications, SIAM J. Computing, 9 (1980), 200–211.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    P. McMullen, The maximum number of faces of a convex polytope, Mathematika 17 (1970), 179–184.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    A. Mandel, Topology of oriented matroids, Ph.D. thesis, Dept. of Combinatorics and Optimization, Univ. of Waterloo, Waterloo, Ont., 1981.Google Scholar
  27. 27.
    I. Paschinger, Konvexe Polytope und Dirichletsche Zellenkomplexe, Math. Inst., Univ. Salzburg, Austria, Arbeitsbericht 1–2, 1982.MATHGoogle Scholar
  28. 28.
    F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and three dimensions, C. ACM 20 (1977), 87–93.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    F. P. Preparta and D. E. Muller, Finding the intersection ofn halfspaces in timeO (n logn), Theore. Comput. Sci. 8 (1979), 45–55.CrossRefMATHGoogle Scholar
  30. 30.
    R. Seidel, A convex hull algorithm optimal for point sets in even dimensions, Rep. 81-14, Dept. of CS, Univ. of BC, Vancouver B.C., 1981.Google Scholar
  31. 31.
    M. I. Shamos and D. Hoey, Closest-point problems, Proc. of the 17th IEEE Symp. on Foundations of Computer Science, 208–215, 1975.Google Scholar
  32. 32.
    M. Sharir, and D. Leven, Intersection problems and application of Voronoi diagrams, in Advances in Robotics, Vol. 1: Algorithmic and Geometric Aspects of Robotics, J. Schwartz and C. K. Yap, eds., Lawrence Erlbaum Associates Inc. (to appear).Google Scholar
  33. 33.
    D. F. Watson, Computing then-dimensional Delaunay triangulation with applications to Voronoi polytopes, Comput. J. 24 (1981), 167–172.MathSciNetCrossRefGoogle Scholar
  34. 34.
    C. K. Yap, AnO (n logn) algorithm for the Voronoi diagram of a set of simple curve segments, manuscript, Courant Institute of Math. Sciences, NYU, New York, NY, 1984.Google Scholar
  35. 35.
    T. Zaslavsky, Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes, Memoirs AMS 154 (1975).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Herbert Edelsbrunner
    • 1
  • Raimund Seidel
    • 2
  1. 1.Institute f. InformationsverarbeitungTechnical University of GrazGrazAustria
  2. 2.Computer Science DepartmentCornell UniversityIthaca

Personalised recommendations