Foundations of Physics Letters

, Volume 8, Issue 1, pp 73–81 | Cite as

Bose-Fermi systems and computer algebra

  • W. -H. Steeb


Coupled Bose-Fermi systems play a central role in quantum mechanics and solid state physics. We give an implementation of the mathematical properties of Bose-Fermi systems using computer algebra. As an application we consider among others a one-fermion one-boson system for magnetic elastic systems and a supersymmetric Hamilton operator.

Key words

Bose-Fermi systems commutation relations computer algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.-H. Steeb, C. M. Villet, and A. Kunick,Phys. Rev. A 32, 1232 (1985).Google Scholar
  2. 2.
    W.-H. Steeb, J. A. Louw, and A. Kunick,Found. Phys. 17, 173 (1987).Google Scholar
  3. 3.
    M. B. Cibils, Y. Cuche, W. F. Wreszinski, J.-P. Amiet, and H. Beck,J. Phys. A: Math. Gen. 23, 545 (1990).Google Scholar
  4. 4.
    A. Heuer,J. Phys. A: Math. Gen. 26, 7181 (1993).Google Scholar
  5. 5.
    H. G. Reick,J. Phys. A: Math. Gen. 26, 6549 (1993).Google Scholar
  6. 6.
    W.-H. Steeb,Quantum Mechanics using Computer Algebra (World Scientific, Singapore, 1994).Google Scholar
  7. 7.
    W.-H. Steeb,Int. J. Mod. Phys. C 4, 841 (1993).Google Scholar
  8. 8.
    W.-H. Steeb and P. Mulser,Int. J. Theor. Phys. 32, 1445 (1993).Google Scholar
  9. 9.
    W.-H. Steeb and D. Lewien,Algorithms and Computations with REDUCE (B.I.-Wissenschaftsverlag, Mannheim, 1992).Google Scholar
  10. 10.
    A. C. Hearn,REDUCE User's Manual, Version 3.5 (RAND Publication CP78; Rev. 10/93).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • W. -H. Steeb
    • 1
  1. 1.Department of Applied Mathematics and Nonlinear StudiesRand Afrikaans UniversityAuckland ParkSouth Africa

Personalised recommendations