Journal of Statistical Physics

, Volume 74, Issue 1–2, pp 411–432 | Cite as

Large deviations for the 2D ising model: A lower bound without cluster expansions

  • Dmitry Ioffe
Articles

Abstract

We show that a lower large-deviation bound for the block-spin magnetization in the 2D Ising model can be pushed all the way forward toward its correct “Wulff” value for all β>βc.

Key Words

Large deviations Ising model Wulff construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. B. Abraham, Surface structures and phase transitions—Exact results, inPhase Transitions and Critical Phenomena, Vol. 10, C. Domb and J. L. Leibowitz, eds. (Academic Press, London, 1987), pp. 1–74.Google Scholar
  2. 2.
    N. Akutsu and Y. Akutsu, Relationship between the anisotropic interface tension, the scaled interface width and the equilibrium shape in two dimensions,J. Phys. A: Math. Gen. 2813–2820 (1986).Google Scholar
  3. 3.
    J. E. Avron, H. van Beijeren, L. S. Schulman, and R. K. P. Zia, Roughening transition, surface tension and equilibrium droplet shapes in a two-dimensional Ising system,J. Phys. A: Math. Gen. 15:L81–86 (1982).Google Scholar
  4. 4.
    M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, Discontinuity of the magnetization in one=dimensional 1/|x−y|2 Ising and Potts models,J. Stat. Phys. 50:1–40 (1988).Google Scholar
  5. 5.
    J. T. Chayes, L. Chayes, and R. M. Schonman, Exponential decay of connectivities in the two-dimensional Ising model,J. Stat. Phys. 49:433–445 (1987).Google Scholar
  6. 6.
    R. L. Dobrushin, R. Kotecky, and S. Shlosman,Wulff Construction: A Global Shape from Local Interaction (AMS, Providence, Rhode Island, 1992).Google Scholar
  7. 7.
    R. L. Dobrushin and S. Shlosman, Large and moderate deviations in the Ising model and droplet condensation, preprint (1993).Google Scholar
  8. 8.
    R. S. Ellis,Entropy, Large Deviations and Statistical Mechanics (Springer, Berlin, 1985).Google Scholar
  9. 9.
    H. Föllmer and M. Ort, Large deviations and surface entropy for Markov fields,Astérisque 157–158:173–190 (1988).Google Scholar
  10. 10.
    C. M. Newman, Private communication (1993).Google Scholar
  11. 11.
    C. M. Newman, Normal fluctuations and the FKG inequalities,Commun. Math. Phys. 74:119–128 (1980).Google Scholar
  12. 12.
    C. E. Pfister, Large deviations and phase separation in the two-dimensional Ising model,Helv. Phys. Acta 64:953–1054 (1991).Google Scholar
  13. 13.
    R. T. Rockafellar,Convex Analysis (University Press, 1972).Google Scholar
  14. 14.
    R. H. Schonmann, Second order large deviation estimates for ferromagnetic system in the phase coexistence region,Commun. Math. Phys. 112:409–422 (1987).Google Scholar
  15. 15.
    S. B. Shlosman, The droplet in the tube: A case of phase transition in the canonical ensemble,Commun. Math. Phys. 125:81–90 (1989).Google Scholar
  16. 16.
    S. B. Shlosman, Correlation inequalities and their applications,J. Sov. Math. 15:79–101 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Dmitry Ioffe
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York

Personalised recommendations