Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the correlation for Kac-like models in the convex case

  • 228 Accesses

  • 65 Citations

Abstract

The aim of this paper is to stu the behavior asm tends to ∞ of a family of measures exp[-Φ (m)(x)]dx (m) on ℝm, whereΦ (m) is a potential on ℝm which is a perturbation “in a suitable sense” of the harmonic potential Σ j x j 2 .

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Avron, I. Herbst, and B. Simon, Schrödinger operators with magnetic fields, III Atoms in homogeneous magnetic fields,Commun. Math. Phys. 79:529–572 (1981).

  2. 2.

    P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968).

  3. 3.

    H. J. Brascamp and E. Lieb, On extensions of the Brunn-Minkovski and Prékopa-Leindler Theorems, including inequalities for log concave functions, and with an application to diffusion equation,J. Funct. Anal. 22 (1976).

  4. 4.

    E. Brézin, Course, ENS (1989).

  5. 5.

    M. Brunaud and B. Helffer, Un problème de double puits provenant de la théorie statistico-mécanique des changements de phase (ou relecture d'un cours de M. Kac), Preprint (March 1991).

  6. 6.

    P. Cartier, Inégalités de corrélation en mécanique statistique,Séminaire Bourbaki 25ème année, 1972–73, No. 431 (Lecture Notes in Mathematics, No. 383; Springer-Verlag, Berlin).

  7. 7.

    R. S. Ellis,Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 1985).

  8. 8.

    C. Fortuin, P. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89–103 (1971).

  9. 9.

    J. Glimm and A. Jaffe,Quantum Physics (A Functional Integral Point of View), 2nd ed. (Springer-Verlag, Berlin).

  10. 10.

    F. Guerra, J. Rosen, and B. Simon, TheP(φ)2 Euclidean quantum field theory as classical statistical mechanics,Ann. Math. 101:111–259 (1975).

  11. 11.

    B. Helffer, On Schrödinger equation in large dimension and connected problems in statistical mechanics, inDifferential Equations with Applications to Mathematical Physics, W. F. Ames, E. M. Harrell II, and J. V. Herod, eds. (Academic Press, New York, 1992), pp. 153–166.

  12. 12.

    B. Helffer, Around a stationary phase theorem in large dimension,J. Funct. Anal., to appear.

  13. 13.

    B. Helffer, Problèmes de double puits provenant de la théorie statistico-mécanique des changements de phase, II Modèles de Kac avec champ magnétique, étude de modèles près de la température critique, Preprint (March 1992).

  14. 14.

    B. Helffer and J. Sjöstrand, Multiple wells in the semi-classical limit, I,Commun. PDE 9(4):337–408 (1984); II,Ann. Inst. H. Poincaré Phys. Theor. 42(2):127–212 (1985).

  15. 15.

    B. Helffer and J. Sjöstrand, Semiclassical expansions of the thermonamic limit for a Schrödinger equation,Astérisque 210:135–181 (1992).

  16. 16.

    B. Helffer and J. Sjöstrand, Semiclassical expansions of the thermonamic limit for a Schrödinger equation II,Helv. Phys. Acta 65:748–765 (1992).

  17. 17.

    M. Kac, Statistical mechanics of some one-dimensional systems, inStudies in Mathematical Analysis and Related Topics: Essays in Honor of Georges Polya (Stanford University Press, Stanford, California, 1962), pp. 165–169.

  18. 18.

    M. Kac,Mathematical Mechanisms of Phase Transitions (Gordon and Breach, New York, 1966).

  19. 19.

    D. Robert, Propriétés spectrales d'opérateurs pseudo-différentiels,Commun. PDE 3(9):755–826 (1978).

  20. 20.

    D. Ruelle,Statistical Mechanics (Benjamin, New York, 1969).

  21. 21.

    B. Simon,The P(φ)2 Euclidean Quantum Field Theory (Princeton University Press, Princeton, New Jersey, 1974).

  22. 22.

    B. Simon,Functional Integration and Quantum Physics (Academic Press, New York, 1979).

  23. 23.

    B. Simon,The Statistical Mechanics of Lattice Gases (Princeton University Press, Princeton, New Jersey, 1993).

  24. 24.

    I. M. Singer, B. Wong, S. T. Yau, and S. S. T. Yau, An estimate of the gap of the first two eigenvalues of the Schrödinger operator,Ann. Scuola Norm. Sup. Pisa (4) 12:319–333 (1985).

  25. 25.

    J. Sjöstrand, Potential wells in high dimensions I,Ann. Inst. H. Poincaré Phys. Theor. 58(1) (1993).

  26. 26.

    J. Sjöstrand, Potential wells in high dimensions II, more about the one well case,Ann. Inst. H. Poincaré Phys. Theor. 58(1) (1993).

  27. 27.

    J. Sjöstrand, Exponential convergence of the first eigenvalue divided by the dimension, for certain sequences of Schrödinger operator,Astérisque 210:303–326 (1992).

  28. 28.

    J. Sjöstrand, Schrödinger in high dimensions, asymptotic constructions and estimates, inProceeding of the French-Japanese Symposium on Algebraic Analysis and Singular Perturbations (CIRM, Luminy, France, 1991).

  29. 29.

    J. Sjöstrand, Evolution equations in a large number of variables,Math. Nachr., to appear.

  30. 30.

    A. D. Sokal, Mean field bounds and correlation inequalities,J. Stat. Phys. 28:431–439 (1982).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Helffer, B., Sjöstrand, J. On the correlation for Kac-like models in the convex case. J Stat Phys 74, 349–409 (1994). https://doi.org/10.1007/BF02186817

Download citation

Key Words

  • Statistical mechanics correlation
  • thermonamic limit magnetization
  • maximum principle