Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

On critical phenomena in interacting growth systems. Part II: Bounded growth


This paper completes the classification of some infinite and finite growth systems which was started in Part I. Components whose states are integer numbers interact in a local deterministic way, in addition to which every component's state grows by a positive integerk with a probability εk(1-ε) at every moment of the discrete time. Proposition 1 says that in the infinite system which starts from the state “all zeros”, percentages of elements whose states exceed a given valuek≥0 never exceed (Cε)k, whereC=const. Proposition 2 refers to finite systems. It states that the same inequalities hold during a time which depends exponentially on the system size.

This is a preview of subscription content, log in to check access.


  1. 1.

    Andrei Toom, Stable and attractive trajectories in multicomponent systems inMulticomponent Random Systems, R. Dobrushin and Ya. Sinai, eds. (Marcel Dekker, New York, 1980) pp. 549–576.

  2. 2.

    A. Toom, N. Vasilyev, O. Stavskaya, L. Mityushin, G. Kurdryumov, and S. Pirogov, Discrete local Markov systems, inStochastic Cellular Systems: Ergodicity, Memory, Morphogenesis, R. Dobrushin, V. Kryukov, and A. Toom, eds. (Manchester University Press, 1990).

  3. 3.

    Andrei Toom, On critical phenomena in interacting growth systems. Part I: General,J. Stat. Phys., this issue.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toom, A. On critical phenomena in interacting growth systems. Part II: Bounded growth. J Stat Phys 74, 111–130 (1994).

Download citation

Key Words

  • Random process
  • local interaction
  • critical phenomena growth
  • combinatorics
  • contour method
  • graph theory