Annals of Operations Research

, Volume 14, Issue 1, pp 245–289 | Cite as

Parallel computing in combinatorial optimization

  • G. A. P. Kindervater
  • J. K. Lenstra
Article

Abstract

This is a review of the literature on parallel computers and algorithms that is relevant for combinatorial optimization. We start by describing theoretical as well as realistic machine models for parallel computations. Next, we deal with the complexity theory for parallel computations and illustrate the resulting concepts by presenting a number of polylog parallel algorithms andP-completeness results. Finally, we discuss the use of parallelism in enumerative methods.

1980 Mathematics Subject Classification

90C27 68Q15 68Q25 68Rxx 

Key Words and Phrases

Parallel computer computational complexity polylog parallel algorithm P-completeness sorting shortest paths minimum spanning tree matching maximum flow linear programming knapsack scheduling traveling salesman dynamic programming branch and bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Ajtai, J. Komlós andE. Szemerédi, Sorting inclogn parallel steps, Combinatorica 3 (1983) 1–19.Google Scholar
  2. [2]
    H. Alt, T. Hagerup, K. Mehlhorn andF.P. Preparata, Deterministic simulation of idealized parallel computers on more realistic ones, eds.J. Gruska, B. Rovan, J. Wiedermann,Mathematical Foundations of Computer Science 1986, Lecture Notes in Computer Science 233 (Springer, Berlin, 1986) 199–208.Google Scholar
  3. [3]
    B. Awerbuch, A. Israeli andY. Shiloach, Finding Euler circuits in logarithmic parallel time, Proc. 16th Annual ACM Symp. Theory of Computing (1984) 249–257.Google Scholar
  4. [4]
    R.E. Bellman,Dynamic Programming (Princeton University Press, Princeton, NJ, 1957).Google Scholar
  5. [5]
    R.E. Bellman andS.E. Dreyfus,Applied Dynamic Programming (Princeton University Press, Princeton, NJ, 1962).Google Scholar
  6. [6]
    J.L. Bentley, A parallel algorithm for constructing minimum spanning trees, J. Algorithms 1 (1980) 51–59.CrossRefGoogle Scholar
  7. [7]
    J.L. Bentley andH.T. Kung, A tree machine for searching problems, Proc. 1979 Internat. Conf. Parallel Processing (1979) 257–266.Google Scholar
  8. [8]
    C. Berge andA. Ghouila-Houri,Programmes, Jeux et Réseaux de Transports (Dunod, Paris, 1962).Google Scholar
  9. [9]
    O.J. Boxma andG.A.P. Kindervater,A Queueing Network Model for Analyzing a Class of Branch and Bound Algorithms on a Master-Slave Architecture, Report OS-R8717 (Centre for Mathematics and Computer Science, Amsterdam, 1987).Google Scholar
  10. [10]
    F.W. Burton, M.M. Huntbach, G.P. McKeown andV.J. Rayward-Smith,Parallelism in Branch-and-Bound Algorithms, Report CSA/3/1983 (University of East Anglia, Norwich, 1983).Google Scholar
  11. [11]
    J. Casti, M. Richardson andR. Larson, Dynamic programming and parallel computers, J. Optim. Theory Appl. 12 (1973) 423–438.CrossRefGoogle Scholar
  12. [12]
    A.K. Chandra, D.C. Kozen andL.J. Stockmeyer, Alternation, J. Assoc. Comput. Mach. 28 (1981) 114–133.Google Scholar
  13. [13]
    L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput. 5 (1976) 616–623.CrossRefGoogle Scholar
  14. [14]
    S.A. Cook, An observation on time-storage trade off, J. Comput. System Sci. 9 (1974) 308–316.Google Scholar
  15. [15]
    S.A. Cook, Towards a complexity theory of synchronous parallel computation, Enseign. Math. (2) 27 (1981) 99–124.Google Scholar
  16. [16]
    E. Dekel, D. Nassimi andS. Sahni, Parallel matrix and graph algorithms, SIAM J. Comput. 10 (1981) 657–675.CrossRefGoogle Scholar
  17. [17]
    E. Dekel andS. Sahni, Binary trees and parallel scheduling algorithms, IEEE Trans. Comput. C-32 (1983) 307–315.Google Scholar
  18. [18]
    E. Dekel andS. Sahni, Parallel scheduling algorithms, Oper. Res. 31 (1983) 24–49.Google Scholar
  19. [19]
    P. Di Chio andV. Zecca,IBM ECSEC Facilities: User's Guide, Report G513-4080 (IBM European Center for Scientific and Engineering Computing, Rome, 1985).Google Scholar
  20. [20]
    E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269–271.CrossRefGoogle Scholar
  21. [21]
    D. Dobkin, R.J. Lipton andS. Reiss, Linear programming is log-space hard forP, Inform. Process. Lett. 8 (1979) 96–97.CrossRefGoogle Scholar
  22. [22]
    J. Edmonds andR.M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, J. Assoc. Comput. Mach. 19 (1972) 248–264.Google Scholar
  23. [23]
    O.I. El-Dessouki andW.H. Huen, Distributed enumeration on between computers, IEEE Trans. Comput. C-29 (1980) 818–825. Note: in the title, read ‘network’ for ‘between’.Google Scholar
  24. [24]
    M.J. Flynn, Very high-speed computing systems, Proc. IEEE 54 (1966) 1901–1909.Google Scholar
  25. [25]
    T.J. Gardner, I.M. Gerard, C.R. Mowers, E. Nemeth andR.B. Schnabel,DPUP: a Distributed Processing Utilities Package, Report CU-CS-337-86 (University of Colorado, Boulder, 1986).Google Scholar
  26. [26]
    M.R. Garey andD.S. Johnson,Computers and Intractability: a Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).Google Scholar
  27. [27]
    L.M. Goldschlager, The monotone and planar circuit value problems are log space complete forP, SIGACT News 9.2 (1977) 25–29.CrossRefGoogle Scholar
  28. [28]
    L.M. Goldschlager, A universal connection pattern for parallel computers, J. Assoc. Comput. Mach. 29 (1982) 1073–1086.Google Scholar
  29. [29]
    L.M. Goldschlager, R.A. Shaw andJ. Staples, The maximum flow problem is log space complete forP, Theoret. Comput. Sci. 21 (1982) 105–111.CrossRefGoogle Scholar
  30. [30]
    T. Gonzalez andS. Sahni, Preemptive scheduling of uniform processor systems, J. Assoc. Comput. Mach. 25 (1978) 92–101.Google Scholar
  31. [31]
    L.J. Guibas, H.T. Kung andC.D. Thompson, Direct VLSI implementation of combinatorial algorithms, Caltech Conf. VLSI (1979) 509–525.Google Scholar
  32. [32]
    U.I. Gupta, D.T. Lee andJ.Y.-T. Leung, An optimal solution for the channel-assignment problem, IEEE Trans. Comput. C-28 (1979) 807–810.Google Scholar
  33. [33]
    J.R. Gurd, C.C. Kirkham andI. Watson, The Manchester prototype dataflow computer, Comm. ACM 28 (1985) 34–52.CrossRefGoogle Scholar
  34. [34]
    D. Helmbold andE. Mayr,Fast Scheduling Algorithms on Parallel Computers, Report CS-84-1025 (Stanford University, CA, 1984).Google Scholar
  35. [35]
    R.W. Hockney andC.R. Jesshope,Parallel Computers: Architecture, Programming and Algorithms (Hilger, Bristol 1981).Google Scholar
  36. [36]
    D.B. Johnson, Parallel algorithms for minimum cuts and maximum flows in planar networks, J. Assoc. Comput. Mach. 34 (1987) 950–967.Google Scholar
  37. [37]
    D.S. Johnson, The NP-completeness column: an ongoing guide; seventh edition, J. Algorithms 4 (1983) 189–203.CrossRefGoogle Scholar
  38. [38]
    A.R. Karlin andE. Upfal, Parallel hashing — an efficient implementation of shared memory (preliminary version), Proc. 18th Annual ACM Symp. Theory of Computing (1986) 160–168.Google Scholar
  39. [39]
    R.M. Karp, E. Upfal, andA. Wigderson, Constructing a perfect matching is in Random NC, Combinatorica 6 (1986) 35–48.Google Scholar
  40. [40]
    L.G. Khachian, A polynomial algorithm in linear programming, Soviet Math. Dokl. 20 (1979) 191–194.Google Scholar
  41. [41]
    G.A.P. Kindervater, A parallel branch and bound algorithm for the job shop problem, presentation, 8th European Conference on Operational Research, Lisbon, September 15–19, 1986.Google Scholar
  42. [42]
    G.A.P. Kindervater andJ.K. Lenstra, Parallel algorithms, eds.M. O'hEigeartaigh, J.K. Lenstra andA.H.G. Rinnooy Kan,Combinatorial Optimization: Annotated Bibliographies (Wiley, Chichester, 1985) Ch. 8.Google Scholar
  43. [43]
    G.A.P. Kindervater andJ.K. Lenstra, An introduction to parallelism in combinatorial optimization, Discrete Appl. Math. 14 (1986) 135–156.CrossRefGoogle Scholar
  44. [44]
    G.A.P. Kindervater andJ.K. Lenstra,The Parallel Complexity of TSP Heuristics, Report OS-R8609 (Centre for Mathematics and Computer Science, Amsterdam, 1986).Google Scholar
  45. [45]
    G.A.P. Kindervater andH.W.J.M. Trienekens, Experiments with parallel algorithms for combinatorial problems, European J. Oper. Res. 33 (1988) 65–81.CrossRefGoogle Scholar
  46. [46]
    R.E. Ladner, The circuit value problem is log space complete forP, SIGACT News 7.1 (1975) 18–20.CrossRefGoogle Scholar
  47. [47]
    B.J. Lageweg, J.K. Lenstra andA.H.G. Rinnooy Kan, Job-shop scheduling by implicit enumeration, Management Sci. 24 (1977) 441–450.Google Scholar
  48. [48]
    T.-H. Lai andS. Sahni, Anomalies in parallel branch-and-bound algorithms, Comm. ACM 27 (1984) 594–602.CrossRefMathSciNetGoogle Scholar
  49. [49]
    T.-H. Lai andA. Sprague, Performance of parallel branch-and-bound algorithms, IEEE Trans. Comput. C-34 (1985) 962–964.Google Scholar
  50. [50]
    T.-H. Lai andA. Sprague, A note on anomalies in parallel branch-and-bound algorithms with one-to-one bounding functions, Inform. Process. Lett. 23 (1986) 119–122.CrossRefMathSciNetGoogle Scholar
  51. [51]
    E.L. Lawler,Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston, New York, 1976).Google Scholar
  52. [52]
    E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan andD.B. Shmoys, eds.,The Traveling Salesman Problem: a Guided Tour of Combinatorial Optimization (Wiley, Chichester, 1985).Google Scholar
  53. [53]
    G.-J. Li andB.W. Wah, Coping with anomalies in parallel branch-and-bound algorithms, IEEE Trans. Comput. C-35 (1986) 568–573.MathSciNetGoogle Scholar
  54. [54]
    L. Lovász, Determinants, matchings and random algorithms, ed.L. Budach,Fundamentals of Computing Theory, FCT '79 (Akademie Verlag, Berlin, 1979) 565–574.Google Scholar
  55. [55]
    C.U. Martel,A Parallel Algorithm for Preemptive Scheduling of Uniform Machines, Preprint (University of California, Davis, CA, 1986).Google Scholar
  56. [56]
    R. McNaughton, Scheduling with deadlines and loss function, Management Sci. 6 (1959) 1–12.Google Scholar
  57. [57]
    N. Megiddo,Poly-log Parallel Algorithms for LP with an Application to Exploding Flying Objects (1982) unpublished manuscript.Google Scholar
  58. [58]
    D.E. Muller andF.P. Preparata, Bounds to complexities of networks for sorting and for switching, J. Assoc. Comput. Mach. 22 (1975) 195–201.Google Scholar
  59. [59]
    J.F. Muth andG.L. Thompson, eds.,Industrial Scheduling (Prentice Hall, Englewood Cliffs, NJ, 1963), 237.Google Scholar
  60. [60]
    F.P. Preparata andJ. Vuillemin, The cube-connected cycles: a versatile network for parallel computation, Comm. ACM 24 (1981) 300–309.CrossRefGoogle Scholar
  61. [61]
    R.C. Prim, Shortest connection networks and some generalizations, Bell System Tech. J. 36 (1957) 1389–1401.Google Scholar
  62. [62]
    E.A. Pruul,Parallel Processing and a Branch-and-Bound Algorithm, M.Sc. thesis (Cornell University, Ithaca, NY, 1975).Google Scholar
  63. [63]
    C. Savage andJ. Ja'Ja', Fast, efficient parallel algorithms for some graph problems, SIAM J. Comput. 10 (1981) 682–691.CrossRefGoogle Scholar
  64. [64]
    J.T. Schwartz, Ultracomputers, ACM Trans. Programming Languages and Systems 2 (1980) 484–521.CrossRefGoogle Scholar
  65. [65]
    H.J. Siegel, Analysis techniques for SIMD machine interconnection networks and the effects of processor address masks, IEEE Trans. Comput. C-26 (1977) 153–161.Google Scholar
  66. [66]
    H.J. Siegel, A model of SIMD machines and a comparison of various interconnection networks, IEEE Trans. Comput. C-28 (1979) 907–917.Google Scholar
  67. [67]
    J.S. Squire andS.M. Palais, Programming and design considerations of a highly parallel computer, Proc. AFIPS Spring Joint Computer Conf. 23 (1963) 395–400.Google Scholar
  68. [68]
    H.S. Stone, Parallel processing with the perfect shuffle, IEEE Trans. Comput. C-20 (1971) 153–161.Google Scholar
  69. [69]
    H.W.J.M. Trienekens,Parallel Branch and Bound on an MIMD System, Report 8640/A (Econometric Institute, Erasmus University, Rotterdam, 1986).Google Scholar
  70. [70]
    S.H. Unger, A computer oriented toward spatial problems, Proc. IRE 46 (1958) 1744–1750.Google Scholar
  71. [71]
    E. Upfal, A probabilistic relation between desirable and feasible models of parallel computation (preliminary version), Proc. 16th Annual ACM Symp. Theory of Computing (1984) 258–265.Google Scholar
  72. [72]
    L.G. Valiant, Reducibility by algebraic projections, Enseign. Math. (2) 28 (1982) 253–268.Google Scholar
  73. [73]
    P. van Emde Boas, The second machine class: models of parallelism, eds.J. van Leeuwen andJ.K. Lenstra,Parallel Computers and Computations (CWI Syllabus 9, Centre for Mathematics and Computer Science, Amsterdam, 1985), 133–161.Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1988

Authors and Affiliations

  • G. A. P. Kindervater
    • 1
  • J. K. Lenstra
    • 1
    • 2
  1. 1.Erasmus UniversityRotterdam
  2. 2.Centre for Mathematics and Computer ScienceAmsterdam

Personalised recommendations