Journal of Applied Phycology

, Volume 8, Issue 6, pp 487–502 | Cite as

Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review

  • Katsumi Yamaguchi
Article

Abstract

Japan is one of leading countries in the utilization of and research on microalgae, and various findings have been obtained. Many papers, however, have been published in Japanese, which prevents the information spreading far and wide. The purpose of this review is to introduce recent advances in the utilization of microalgae as well as their basic research in Japan. The discussion covers practical applications ofChlorella andSpirulina biomass to health foods, food additives and feed supplements. The current use of microalgae as live feeds for larvae in aquaculture is also summarized. With respect to microalgal metabolites the present status of research is described with a greater emphasis on bioactive compounds, pigments and oils as potential drugs, coloring matters and biofuels, respectively.

Key words

microalgae Japan biomass metabolites utilization research 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoyama K, Miyake M, Yamada J, Miyake J, Uemura I, Hoshino T, Asada Y (1996) Application of vector pKE4-9 carrying a strong promoter to the expression of foreign proteins inSynechococcus PCC7942. J. mar. Biotechnol. 4: 64–67.Google Scholar
  2. Belay A, Ota Y, Miyakawa K, Shimamatsu H (1993) Current knowledge on potential health benefits ofSpirulina. J. appl. Phycol. 5: 235–241.Google Scholar
  3. Borowitzka MA (1988a) Vitamins and fine chemicals from microalgae. In Borowtizka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge Univ. Press, Cambridge: 169–174.Google Scholar
  4. Borowitzka MA (1988b) Fats, oils and hydrocarbons. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge Univ. Press, Cambridge: 257–287.Google Scholar
  5. Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J. appl. Phycol. 7: 3–15.Google Scholar
  6. Cannell RJP, Kellam SJ, Owsianka AM, Walker JM (1988) Results of a large scale screen of microalgae for the production of protease inhibitors. Planta Medica 56: 10–14.Google Scholar
  7. Cannell RJP, Kellan SJ, Owsianka AM, Walker JM (1989) Microalgae and cyanobacteria as a source of glycosidase inhibitors. J. gen. Microbiol. 133: 1701–1705.Google Scholar
  8. Ebina H (1975)Spirulina. Shoku no Kagaku 27: 57–65. (Japanese)Google Scholar
  9. Fukino H, Kamoashi T, Yamane Y, Miyagawa K, Kato T (1989) Effects ofSpirulina on nephrotoxicity due to inorganic mercury and cisplatin. Absts. Papers, the 109th Ann. Meetg. Jpn. Pharmacol. Soc. 630. (Japanese)Google Scholar
  10. Fukui S (1979) Studies on amino acid metabolism of diabetics II. With special reference to the effects ofChlorella. Kiso to Rinsho 13: 289–300. (Japanese)Google Scholar
  11. Fukusho K (1981) Production of the rotiferBrachionus plicatilis. Yoshoku 18 (7): 44–51. (Japanese)Google Scholar
  12. Fukuyo Y (1994) Biotoxins. In Jpn. Soc. Fish. Sci. (ed.), Recent Advances in Fisheries Science. Koseisha-Koseikaku, Tokyo: 258–264. (Japanese)Google Scholar
  13. Furukawa K, Sakai K, Watanabe S, Maruyama K, Murakami M, Yamaguchi K, Ohizumi Y (1993) Goniodomin A induces modulation of actomyosin ATPase activity mediated through conformational change of actin. J. biol. Chem. 268: 26026–26031.PubMedGoogle Scholar
  14. Guanzon NG, Nakamura H, Nishimura K (1995) Accumulation of copper, zinc, cadmium, and their combinations by three freshwater microalgae. Fisheries Sci. 61: 149–156.Google Scholar
  15. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31: 3345–3348.Google Scholar
  16. Hashimoto Y (1979) Marine Toxins and Other Bioactive Marine Metabolites. Jpn. Sci. Soc. Press, Tokyo, 369 pp.Google Scholar
  17. Hasuda S, Mito Y (1966) An experimental use ofChlorella for a patient with incurable wound. Shindan to Shinyaku 3: 17–20. (Japanese)Google Scholar
  18. Hasui M, Matsuda M, Yoshimatsu S, Okutani K (1995) Production of a lactate-associated galactan sulfate by a dinoflagellateGymnodinium A3. Fisheries Sci. 61: 363–364.Google Scholar
  19. Hayashi T, Suitani Y, Murakami M, Yamaguchi K, Konosu S, Noda H (1986) Protein and amino acid compositions of five species of marine phytoplankton. Bull. Jpn. Soc. Sci. Fish. 52: 337–343.Google Scholar
  20. Hirano M, Imai M, Abe K, Manabe E (1995) Influence of photosynthetic activity on fatty acid production bySpirulina platensis. J. mar. Biotechnol. 3: 86–88.Google Scholar
  21. Hirano M, Mori H, Miura Y, Matsunaga N, Nakamura N, Matsunaga T (1990) γ-Linolenic acid production by microalgae. Appl. Biochem. Biotechnol. 24/25: 183–191.Google Scholar
  22. Hirayama K, Maruyama I, Maeda T (1989) Nutritional effect of freshwaterChlorella on growth of the rotiferBranchionus plicatilis. Hydrobiologia 186/187: 39–42.Google Scholar
  23. Honjo T, Asakawa M (1990) Allelopathic substances. In Yasumoto T (ed.), Bioactive Metabolites of Marine Microorganisms. Koseisha-Koseikaku, Tokyo: 41–53. (Japanese)Google Scholar
  24. Hosotani K, Kitaoka S (1977) Determination of the nutritive value ofEuglena gracilis protein byin vitro digestion experiments and rat feeding tests. Nippon Nogeikagaku Kaishi 51: 483–488. (Japanese, with English summary)Google Scholar
  25. Hosoyamada Y, Takai Y, Kato T (1991) Effects of water-soluble and insoluble fractions ofSpirulina on serum lipids and glucose tolerance of rats. J. Jpn. Soc. Nutr. Food Sci. 44: 273–277. (Japanese, with English summary)Google Scholar
  26. Igarashi T, Yasumoto T (1996) Structure determination of the principle of mysterious red-tide toxin, prymnesin. Kagaku to Seibutsu 34: 495–497. (Japanese)Google Scholar
  27. Igarashi T, Satake M, Yasumoto T (1996) Prymnesin-2: A potent ichthyotoxic and hemolytic glycoside isolated from the red tide algaPrymnesium parvum. J. Am. chem. Soc. 118: 479–480.Google Scholar
  28. Ikemoto H, Shimada A, Maruyama T, Miyachi S (1995) Novel microalgae from the ocean. J. mar. Biotechnol. 3: 9–15.Google Scholar
  29. Imada M (1978) Red sea bream and crustaceans. In Jpn. Soc. Fish. Sci. (ed.), Carotenoids of Aquatic Animals. Koseisha-Koseikaku, Tokyo: 108–122. (Japanese)Google Scholar
  30. Ishida K, Murakami M, Matsuda H, Yamaguchi K (1995) Micropeptin 90, a plasmin and trypsin inhibitor from the bluegreen algaMicrocystis aeruginosa (NIES-90). Tetrahedron Lett. 36: 3535–3538.Google Scholar
  31. Ishida Y (1990) Substances controlling growth and behavior. In Yasumoto T (ed.), Bioactive Metabolites of Marine Microorganisms. Koseisha-Koseikaku, Tokyo: 30–40. (Japanese)Google Scholar
  32. Ito Y, Ito S, Kanamura H, Masaki K (1987) Dietary effect of attaching diatomNavicula ramosissima on mass production of young sea urchinPseudocentrotus depressus. Nippon Suisan Gakkaishi 53: 1753–1740. (Japanese, with English summary).Google Scholar
  33. Iwamoto H (1975)Spirulina; Hope for a new protein source. Kagaku to Kogyo 28: 110–113. (Japanese)Google Scholar
  34. Iwamoto H (1986) Hydrocarbon production by microalgae. Hakko to Kogyo 44: 1160–1167. (Japanese)Google Scholar
  35. Iwamoto H (1989) Cultivation ofBotryococcus braunii and hydrocarbon production. In Miyachi S, Karube I, Ishida Y (eds), Current Topics in Marine Biotechnology. Jpn. Soc. Mar. Biotechnol. Tokyo: 123–126.Google Scholar
  36. Iwamoto H (1990) Petroleum made by microalgae. Nenryo Kyokaishi 69: 230–238. (Japanese, with English summary)Google Scholar
  37. Iwata T, Inayama T, Kato T (1987a) Effects ofSpirulina platensis on fructose-induced hyperlipidemia in rats. J. Jpn. Soc. Nutr. Food Sci. 40: 463–467. (Japanese, with English summary)Google Scholar
  38. Iwata T, Inayama T, Miwa S, Kato T (1987b) Effects ofSpirulina platensis on blood lipase activity of fructose-induced hyperlipidemia Wister rats. Bull. Kagawa Nutr. Univ. 18: 53–58. (Japanese)Google Scholar
  39. Iwata T, Munekata H, Inayama T, Kato T (1990) Effects ofSpirulina platensis on the blood pressure of rats. Bull. Kagawa Nutr. Univ. 21: 63–70. (Japanese)Google Scholar
  40. Jpn. Bioind. Assoc. (ed.) (1983) Investigation on the Production of Fuels by Oil Plants: Comprehensive Survey on Microalgae. Jpn. Bioind. Assoc., Tokyo, 228 pp. (Japanese)Google Scholar
  41. Jpn. Bioind. Assoc. (ed.) (1984) Investigation on the Production of Fuels by Oil Plants: Comprehensive Survey on Microalgae. Jpn. Bioind. Assoc., Tokyo, 209 pp. (Japanese)Google Scholar
  42. Jpn. Bioind. Assoc. (ed.), (1985) Feasibility Studies on Techniques in Production and Utilization of New Fuel Oils by Using Biotechnology: Investigation on Production System of Fuel Oils by Microalgae. Jpn. Bioind. Assoc., Tokyo, 101 pp. (Japanese)Google Scholar
  43. Jpn. Bioind. Assoc. (ed.) (1986) Feasibility Studies on Techniques in Production and Utilization of New Fuel Oils by Using Biotechnology: Investigation on Production System of Fuel Oils by Microalgae. Jpn. Bioind. Assoc., Tokyo, 126 pp. (Japanese)Google Scholar
  44. Jpn. Bioind. Assoc. (ed.) (1987) Feasibility Studies on Techniques in Production and Utilization of New Fuel Oils by Using Biotechnology: Investigation on Production System of Fuel Oils by Microalgae. Jpn. Bioind. Assoc., Tokyo, 140 pp. (Japanese)Google Scholar
  45. Jpn. Soc. Fish. Sci. (ed.) (1982) Toxic Phytoplankton: Occurrence, Mode of Action and Toxins. Koseisha-Koseikaku, Tokyo, 135 pp. (Japanese)Google Scholar
  46. Kadota H (ed.) (1987) Freshwater Red Tides. Koseisha-Koseikaku, Tokyo, 304 pp. (Japanese)Google Scholar
  47. Kageyama H, Ishii A, Matsuoka T, Kodera Y, Hiroto M, Matsushima A, Inada Y (1994) Simple isolation of phycocyanin fromSpirulina platensis and phycocyanobilin-protein interaction. J. mar. Biotechnol. 1: 185–188.Google Scholar
  48. Kakisawa H (1990) Biologically active substances from aquatic microorganisms. In Yasumoto T (ed.), Bioactive Metabolites of Marine Microorganisms. Koseisha-Koseikaku, Tokyo: 54–64. (Japanese)Google Scholar
  49. Kamoashi T, Fukino H, Yamane Y, Kato T, Shimamatsu H (1988) Effects ofSpirulina on alleviation of neophrotoxicity due to inorganic mercury and p-aminophenol. Absts. Papers, the 108th Ann. Meetg. Jpn. Pharmcol. Soc. 58. (Japanese)Google Scholar
  50. Kapoor M, Wakasugi T, Yoshinaga K, Sugiura M (1996) The chloroplast chlL gene of the green algaChlorella vulgaris C-27 contains a self splicing group I intron. Mol. gen. Genetics 250: 655–664.Google Scholar
  51. Kato T (1985) Present state and future directions in the utilization of pigments produced by microorganisms. Food. Chem. (8): 40–46. (Japanese)Google Scholar
  52. Kato T (1991) Chemistry of microalgae and their application to food. Food Chem. (8): 30–35. (Japanese)Google Scholar
  53. Kato T (1992)Spirulina. In Yamaguchi K (ed.), Utilization of Microalgae. Koseisha-Koseikaku, Tokyo: 32–44. (Japanese)Google Scholar
  54. Kato T, Takemoto K, Katayama H, Kuwabara Y (1984) Effects ofSpirulina platensis on dietary hypercholesterolemia in rats. J. Jpn. Soc. Nutr. Food Sci. 37: 323–332. (Japanese, with English summary)Google Scholar
  55. Kawamata M (1988) Studies on Extractive Nitrogenous Components of Microalgae. Ph.D. Disseration, Univ. Tokyo, 88 pp. (Japanese)Google Scholar
  56. Kawamata M, Murakami M, Yamaguchi K, Konosu S (1988) Extractive nitrogenous components of the blue-green algaSpirulina maxima. Nippon Suisan Gakkaishi 54: 1453.Google Scholar
  57. Kawamura S (1977) Introduction of researches onSpirulina in France. Ferment. & Ind. 35: 854–860. (Japanese)Google Scholar
  58. Kayane H (1991) Coral reef eco-factories for fixing CO2. Mar. Biotechnol. Kenkyu Kaiho 4 (3): 14–27. (Japanese)Google Scholar
  59. Kiffe M, Nokihara K, Matsunaga T (1995) Purification of docosahexaenoic acid (DHA) produced by marine microalgaIsochrysis galbana. J. mar. Biotechnol. 2: 139–142.Google Scholar
  60. Kikuchi M, Hirano A, Kunito S, Kawakami Y (1995) Fucoxanthin, an anti-oxidative substance from marine diatomPhaeodactylum tricornutum. J. mar. Biotechnol. 3: 132–135.Google Scholar
  61. Kitagawa I, Kobayashi M, Hayashi K, Kawazoe K (1989) Heterosigma-glycolipids I, II and III from a raphidophycean flagellateHeterosigma akashio. In Miyachi S, Karube I, Ishida Y (eds), Current Topics in Marine Biotechnology. Jpn. Soc. Mar. Biotechnol., Tokyo: 195–198.Google Scholar
  62. Kitajima C (1983) The present status of marine fish seed production techniques in Japan. Proc. Symp. Int. Aquaculture, Coquimbo: 375–390.Google Scholar
  63. Kitajima Y, Hagiwara K, Koshikawa Y, Sakurai N (1992) Microbial modification of exterior wall appearance using microalgae. Ann. Rep. Kajima Tech. Res. Inst. 40: 329–334. (Japanese, with English summary).Google Scholar
  64. Kitaoka S (ed.) (1989)Euglena: Physiology and Biochemistry. Jpn. Sci. Soc. Press, Tokyo, 272 pp. (Japanese)Google Scholar
  65. Kitaoka S (1993) Culture, chemistry and utilization ofEuglena. In Oishi K (ed.), Science of Algae. Asakura Shoten, Tokyo: 108–119. (Japanese)Google Scholar
  66. Kitazato H, Asaoka S, Iwamoto H (1989) Catalytic cracking of hydrocarbons from microalgae. Sekiyu Gakkaishi 32: 28–34. (Japanese, with English summary)Google Scholar
  67. Kobayashi J (1988) Noticeable bioactive substances in symbiotic association with algae: A new trend in the research on marine bioactive substances. Gendai Kagaku (12): 24–29. (Japanese)Google Scholar
  68. Kobayashi J, Yamaguchi N, Ishibashi M (1994a) Amphidinolide M, a novel 29-membered macrolide from the cultured marine dinoflagellateAmphidinium sp. J. org. Chem. 59: 4698–4700.Google Scholar
  69. Kobayashi J, Yamaguchi N, Ishibashi M (1994b) Amphidinin A, a novel amphidinolide-related metabolite from the cultured marine dinoflagellateAmphidinium sp. Tetrahedron Lett. 35: 7049–7050.Google Scholar
  70. Kobayashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green alga,Haematococcus pluvialis accompanied with morphological changes in acetate media. J. Ferment. Bioengng. 71: 335–339.Google Scholar
  71. Kodama M, Kurano N (1992) Growth of microalgae under high concentration of CO2: Search for a microalgal strain useful for the treatment of industrial waste gases. MBI Report: 57–60.Google Scholar
  72. Kodama M, Ikomoto H, Miyachi S (1993) A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture. J. mar. Biotechnol. 1: 21–25. Kogyo Kaihatsu Kenkyusho (ed.) (1983) Investigation on the Production of Fuels by Oil Plants. Kogyo Kaihatsu Kenkyusho, Tokyo, 198 pp. (Japanese)Google Scholar
  73. Kogyo Kaihatsu Kenkyusho (ed.) (1984) Investigation on the Production of Fuels by Oil Plants: Survey on Mass Production System of Fuels. Kogyo Kaihatsu Kenkyusho, Tokyo, 253 pp. (Japanese)Google Scholar
  74. Komai Y, Onuki K, Yamagishi H, Shiratori T (1978) Photosensitive dermatitis due toChlorella tablets. Food Sanit. Res. 28: 747–752. (Japanese)Google Scholar
  75. Konishi F, Tanaka K, Himeno K, Taniguchi K, Nomoto K (1985) Antitumor effect induced by a hot water extract ofChlorella vulgaris: Resistance to Meth-A tumor growth mediated by CE-induced polymorphonuclear leukocytes. Cancer Immunol. Immunother. 19: 73–78.PubMedGoogle Scholar
  76. Kozakai H, Oshima Y, Yasumoto T (1982) Isolation and structural elucidation of hemolysin from the phytoflagellatePrymnesium parvum. Agric. biol. Chem. 46: 233–236.Google Scholar
  77. Kumazawa S (1991) Hydrogen production by blue-green algae. Mar. Biotechnol. Kenkyu Kaiho 4 (2): 18–27. (Japanese)Google Scholar
  78. Kumazawa S, Shimamura K (1993) Photosynthesis-dependent production of H2 by a marine N2-fixing cyanobacterium,Anabaena sp. TU37-1. J. mar. Biotechnol. 1: 159–162.Google Scholar
  79. Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Miyachi S (1995a) Carbon dioxide uptake rate ofChlorococcus littorale. J. mar. Biotechnol. 3: 108–110.Google Scholar
  80. Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Hata H, Miyachi S (1995b) Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Convers. Mgmt 36: 689–692.Google Scholar
  81. Kuwada Y, Ohta Y (1987) Hydrogen production by an immobilized cyanobacteriumLyngbya sp. J. Ferment. Technol. 65: 597–602.Google Scholar
  82. Liao WL (1990) Studies on the Improvement of Flesh Quality of Cultured Striped JackPseudocaranx dentex. Ph.D. Dissertation, Univ. of Tokyo, Tokyo, 96 pp. (Japanese)Google Scholar
  83. Liao WL, Takeuchi T, Watanabe T, Yamaguchi K (1990) Effect of dietarySpirulina supplementation on extractive nitrogenous constituents and sensory test of cultured striped jack flesh. J. Tokyo Univ. Fish. 77: 241–246. (Japanese, with English summary)Google Scholar
  84. Liao WL, Nur-E-Borhan SA, Okada S, Matsui T, Yamaguchi K (1993) Pigmentation of cultured black tiger prawn by feeding with aSpirulina-supplemented diet. Nippon Suisan Gakkaishi 59: 165–169.Google Scholar
  85. Lincoln RA, Strupinski K, Walker JM (1991) Enzyme inhibitors from algae. Biochem. Soc. Trans. 19: 429S.Google Scholar
  86. Manabe E, Hirano M, Takano H, Ishikawa-Doi N, Sode K, Matsunaga T (1992) Influence of ammonium chloride on growth and fatty acid production bySpirulina platensis. Appl. Biochem. Biotechnol. 34/35: 273–281.Google Scholar
  87. Maruyama I, Ando Y (1992)Chlorella. In Yamaguchi K (ed.), Utilization of Microalgae. Koseisha-Koseikaku, Tokyo: 18–31. (Japanese)Google Scholar
  88. Maruyama I, Ando Y, Maeda T, Hirayama K (1989) Uptake of vitamin B12 by various strains of unicellular algaeChlorella. Nippon Suisan Gakkaishi 55: 1785–1790.Google Scholar
  89. Maruyama I, Kanamaru H, Nakamura N, Ando Y, Hirayama K (1990) Open culture of the rotiferBrachionus plicatilis by feeding vitamin B12-containingChlorella. Suisan Zoshoku 38: 227–231. (Japanese)Google Scholar
  90. Matsumoto H, Hamazaki A (1992) Utilization in space. In Yamaguchi K (ed.), Utilization of Microalgae. Koseisha-Koseikaku, Tokyo: 116–127. (Japanese)Google Scholar
  91. Matsunaga T (1990) Biotechnology of marine photosynthetic procaryote. Kagaku to Seibutsu 27: 513–520. (Japanese)Google Scholar
  92. Matsunaga T (1992) Development of biotechnology. In Yamaguchi K (ed.), Utilization of Microalgae. Koseisha-Koseikaku, Tokyo: 89–101. (Japanese)Google Scholar
  93. Matsunaga T, Sudo H, Takemasa Y, Wachi Y, Nakamura N (1996) Sulfated extracellular polysaccharide production by the halophilic cyanobacteriumAphanocapsa halophyta immobilized on light-diffusing optical fibers. Appl. Microbiol. Biotechnol. 45: 24–27.Google Scholar
  94. Matsuno T (1994) Carotenoids. In Jpn. Soc. Fish. Sci. (ed.), Recent Advances in Fisheries Science. Koseisha-Koseikaku, Tokyo: 292–306. (Japanese)Google Scholar
  95. Matsuno T, Katsuyama M, Iwahashi M, Koike T, Okada M (1980) Intensification of color of redTilapia with lutein, rhodoxanthin andSpirulina. Bull. Jpn. Soc. Sci. Fish. 46: 479–482. (Japanese, with English summary)Google Scholar
  96. Matsuno T, Nagata S, Iwahashi M, Koike T, Okada M (1979) Intensification of color of fancy red carp with zeaxanthin and myxoxanthophyll, major carotenoid constituents ofSpirulina. Bull. Jpn. Soc. Sci. Fish. 45: 627–632. (Japanese, with English summary)Google Scholar
  97. Miki W, Yamaguchi K, Konosu S (1986) Carotenoid composition ofSpirulina maxima. Bull. Jpn. Soc. Sci. Fish. 52: 1225–1227.Google Scholar
  98. Mitsuda H, Shikanai T, Yoshida K (1961) Studies on the utilization ofChlorella as a foodstuff (part 6). Growth stimulating factors inChlorella and Tolura yeast for lactic acid bacteria (I). Eiyo to Shokuryo 14: 28–34. (Japanese)Google Scholar
  99. Mitsuda H, Higuchi M, Yamamoto A, Nakjima K (1977) Protein concentrate from the blue-green algae and its nutritive value. Eiyo to Shokuryo 30: 23–28. (Japanese, with English summary)Google Scholar
  100. Miura Y, Matsunaga T (1989) Antibiotics production from marine microalgae. In Miyachi S, Karube I, Ishida Y (eds), Current Topics in Marine Biotechnology. Jpn. Soc. Mar. Biotechnol., Tokyo: 189–190.Google Scholar
  101. Miura Y, Sode K, Narasaki Y, Matsunaga T (1993) Light-induced anti-microbial activity of extracts from marineChlorella. J. mar. Biotechnol. 1: 143–146.Google Scholar
  102. Miyake M, Asada Y (1996) Efficient transformation of a thermophilic cyanobacterium,Synechococcus elongatus. J. mar. Biotechnol. 4: 113–116.Google Scholar
  103. Miyake M, Yamada J, Aoyama K, Uemura I, Hoshino T, Miyake J, Asada Y (1996) Strong expression of foreign protein inSynechococcus PPC7942. J. mar. Biotechnol. 4: 61–63.Google Scholar
  104. Miyakoshi M, Tanaka M, Miyazawa K, Nara H, Takemoto Y, Maki T, Fukui S, Yasutoku H, Arayasu K, Shimizu K (1980) Studies onChlorella IV. With special reference to hypertension. Kiso to Rinsho 14: 191–200. (Japanese)Google Scholar
  105. Miyamoto K (1995) The use of microalgae in bioremediation. Biosci. Bioind. 53: 1029–1035. (Japanese)Google Scholar
  106. Miyashita H, Kurano N, Miyachi S (1995) Composition and nature of extracellular polysaccharide produced by newly isolated coccoid prasinophyta,Prasinococcus capsulatus. J. mar. Biotechnol. 3: 136–139.Google Scholar
  107. Mori T, Muranaka T, Miki W, Yamaguchi K, Konosu S, Watanabe T (1987) Pigmentation of cultured sweet smelt fed diets supplemented with a blue-green algaSpirulina maxima. Nippon Suisan Gakkaishi 53: 433–438.Google Scholar
  108. Murakami M, Yamaguchi K (1989) Toxicity of red tides. Suishitsu Odaku Kenkyu 12: 757–762. (Japanese)Google Scholar
  109. Murakami M, Yamaguchi K (1990) Biologically active compounds of microalgae. In Yasumoto T (ed.), Bioactive Metabolites of Marine Microorganisms. Koseisha-Koseikaku, Tokyo: 73–85. (Japanese)Google Scholar
  110. Murakami M, Yamaguchi K (1992) Bioactive compounds produced by microalgae. In Yajima H, Shioiri T, Ohizumi Y (eds), The Second Series of Pharmaceutical Research and Development. Vol. 10, Marine Resources for Drug Discovery. Hirokawa Pub. Co., Tokyo: 363–377. (Japanese)Google Scholar
  111. Murakami M, Makabe K, Yamaguchi K, Konosu S (1989) Cytotoxic polyunsaturated fatty acid fromPediastrum. Phytochemistry 28: 625–626.Google Scholar
  112. Murakami M, Matsuda H, Makabe K, Yamaguchi K (1991) Oscillariolide, a novel macrolide from a blue-green algaOscillatoria sp. Tetrahedron Lett. 32: 2391–2394.Google Scholar
  113. Murakami M, Makabe K, Yamaguchi K, Konosu S, Walchli MR (1988a) Goniodomin A, a novel polyether macrolide from the dinoflagellateGoniodoma pseudogoniolaux. Tetrahedron Lett. 29: 1149–1152.Google Scholar
  114. Murakami M, Okita Y, Matsuda H, Okino T, Yamaguchi K (1994) Aeruginosin 298-A, a thrombin and trypsin inhibitor from the blue-green algaMicrocystis aeruginosa (NIES-298). Tetrahedron Lett. 35: 3129–3132.Google Scholar
  115. Murakami M, Ishida K, Okino T, Okita Y, Matsuda H, Yamaguchi K (1995) Aeruginosins 98-A and B, trypsin inhibitors from the blue-green algaMicrocystis aeruginosa (NIES-98). Tetrahedron Lett. 36: 2785–2788.Google Scholar
  116. Murakami M, Nakano H, Yamaguchi K, Konosu S, Nakayama O, Matsumoto Y, Iwamoto H (1988b) Meijicoccene, a new cyclic hydrocarbon fromBotryococcus braunii. Phytochemistry 27: 455–457.Google Scholar
  117. Murata M (1990) Novel macrolides from dinoflagellates. Kagaku to Seibutsu 27: 277–279. (Japanese)Google Scholar
  118. Murata M (1991) Polyether compounds from marine organisms. Nippon Nogeikagaku Kaishi 65: 1743–1751. (Japanese)Google Scholar
  119. Murata M, Tachibana K (1995) Ecofunctions of bioactive metabolites from dinoflagellates. Biosci. Bioind. 53: 883–885. (Japanese)Google Scholar
  120. Mustafa MG, Nakagawa H (1995) A review: Dietary benefits of algae as an additive in fish feed. Israeli J. Aquacul. 47: 163–172.Google Scholar
  121. Nakagawa H, Kasahara S, Tsujimura A, Akira K (1984) Changes of body composition during starvation inChlorella-extract fed ayu. Bull. Jpn. Soc. Sci. Fish. 50: 665–671.Google Scholar
  122. Nakagawa H, Kumai H, Nakamura M, Kasahara S (1982a) Effects ofChlorella-extract supplemented diet on cultured yellowtail II. Effects on resistability (when left standing in the air) from the viewpoint of hematological properties. Suisan Zoshoku 30: 76–83. (Japanese)Google Scholar
  123. Nakagawa H, Kasahara S, Uno E, Minami T, Akira K (1981) Effect of feeding ofChlorella-extract supplement in diet on resisting power of ayu. Suisan Zoshoku 29: 109–116. (Japanese)Google Scholar
  124. Nakagawa H, Inazuka Y, Yamazaki S, Hirata H, Kasahara S (1982b) Effects ofChlorella-extract supplemented diet on cultured yellowtail I. Effects on growth and hematological properties. Suisan Zoshoku 30: 65–75. (Japanese)Google Scholar
  125. Nakamura N, Nakamae H, Maeda N (1983) Effects ofChlorella extract on the growth of plants I. Effects on rooting and endogenous bioactive substances. Green Kenpo 45: 1–17. (Japanese)Google Scholar
  126. Nakamura N, Nakamae H, Maeda N (1984) Effects ofChlorella extract on the growth of plants II. Effects on endogenous auxin and ethylene formation. Green Kenpo 40: 1–7. (Japanese)Google Scholar
  127. Nakao H, Kuwazuka S (1991) Microbes in the soil and effects of hot water-extract ofChlorella on the growth of plants. Absts. Papers, Jpn. Soc. Soil & Fertilizer 37: 43. (Japanese)Google Scholar
  128. Nakaya N, Honma Y, Goto Y (1988) Cholesterol lowering effect ofSpirulina. Nutr. Rep. Int. 37: 1329–1337.Google Scholar
  129. Nakayama S (1975)Spirulina; a possibility of anew protein source. New Food Ind. 17: 7–13. (Japanese)Google Scholar
  130. Nanba T, Yoshimoto H, Kimura H (1986) Outline of feed culture from 1979 to 1984. Bull. Wakayama Saibai Cen. 1: 37–39. (Japanese)Google Scholar
  131. Negoro M, Shioji N, Ikuta Y, Makita T, Uchiumi M (1992) Growth characteristics of microalgae in high-concentration CO2 gas, effects of culture medium trace components, and impurities thereon. Appl. Biochem. Biotech. 34–5: 681–692.Google Scholar
  132. Nematipour GR, Nakagawa H, Kasahara S, Ohya S (1988) Effects of dietary lipid level andChlorella-extract on ayu. Nippon Suisan Gakkaishi 54: 1395–1400.Google Scholar
  133. Nematipour GR, Nakagawa H, Nanba K, Kasahara S, Tsujimura A, Akira K (1987) Effect ofChlorella-extract supplement to diet on lipid accumulation of ayu. Nippon Suisan Gakkaishi 53: 1687–1692.Google Scholar
  134. Nishino H (1993) Anticarcinogenic activity of carotenoids in foodstuffs. Nippon Nogeikagaku Kaishi 67: 39–41. (Japanese)Google Scholar
  135. Ochiai H (1991) Gene transfer into cyanobacteria. Biosci. Bioind. 49: 749–751. (Japanese)Google Scholar
  136. Oda T, Ishimatsu A (1995) Production of active oxygen and mechanism of toxicity development by red-tide plankton,Chattonella. Mar. Biotechnol. Kenkyu Kaiho 8 (1): 15–28. (Japanese)Google Scholar
  137. Ogawa R (1974) Technology on the production ofSpirulina and its utilization for foods. Shokuhin Kogyo 17 (4): 48–52. (Japanese)Google Scholar
  138. Okada S, Yamaguchi K (1989) Effects of nitrogen deficiency on pigment composition of the green algaBotryococcus braunii Berkeley. In Miyachi S, Karube I, Ishida Y (eds), Current Topics in Marine Biotechnology. Jpn. Soc. mar. Biotechnol., Tokyo: 119–122.Google Scholar
  139. Okada S, Murakami M, Yamaguchi K (1995) Hydrocarbon composition of newly isolated strains of the green microalgaBotryococcus braunii. J. appl. Phycol. 7: 555–559.Google Scholar
  140. Okada S, Matsuda H, Murakami M, Yamaguchi K (1996) Botryoxanthin A, a member of a new class of carotenoids from the green microalgaBotryococcus braunii Berkeley. Tetrahedron Lett. 37: 1065–1068.Google Scholar
  141. Okada S, Liao WL, Mori T, Yamaguchi K, Watanabe T (1991) Pigmentation of cultured striped jack reared on diets supplemented with the blue-green algaSpirulina maxima. Nippon Suisan Gakkaishi 57: 1403–1406.Google Scholar
  142. Okaichi T (1974) Significance of amino acid composition of phytoplankton and suspensoid in marine biological production. Bull. Jpn. Soc. Sci. Fish. 40: 471–478.Google Scholar
  143. Okaichi T. Anderson DM, Nemoto T (eds) (1989) Red Tides — Biology, Environmental Science and Toxicology. Elsevier, New York, 49 pp.Google Scholar
  144. Okauchi M (1992) Live feeds for aquaculture. In Yamaguchi K (ed.), Utilization of Microalgae. Koseisha-Koseikaku, Tokyo: 75–88. (Japanese)Google Scholar
  145. Okauchi M, Zhou WJ, Zhou WH, Fukusho K, Kanazawa A (1990) Difference in nutritive value of a microalgaNannochloropsis oculata at various growth phases. Nippon Suisan Gakkaishi 58: 1293–1298. (Japanese, with English summary)Google Scholar
  146. Okino T, Matsuda H, Murakami M, Yamaguchi K (1993a) Microginin, an angiotensin-converting enzyme inhibitor from the blue-green algaMicrocystis aeruginosa. Tetrahedron Lett. 34: 501–504.Google Scholar
  147. Okino T, Matsuda H, Murakami M, Yamaguchi K (1995) New microviridins, elastase inhibitors from the blue-green algaMicrocystis aeruginosa. Tetrahedron 51: 10679–10686.Google Scholar
  148. Okino T, Murakami M, Haraguchi R, Munekata H, Matsuda H, Yamaguchi K (1993b) Micropeptins A and B, plasmin and trypsin inhibitors from the blue-green algaMicrocystis aeruginosa. Tetrahedron Lett. 34: 8131–8134.Google Scholar
  149. Ono K, Miyatake K, Inui H, Kitaoka S, Nakano Y (1995) Wax ester production by anaerobicEuglena gracilis. J. mar. Biotechnol. 2: 157–161.Google Scholar
  150. Oshima Y (1989) Worldwide outbreak of novel paralytic shellfish poisoning: causalty by the dinoflagellateGymnodinium catenatum. Kagaku to Seibutsu 26: 805–806. (Japanese)Google Scholar
  151. Oswald WJ (1988) Micro-algae and waste-water treatment. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge Univ. Press, Cambridge: 305–328.Google Scholar
  152. Rinehart KL, Namikoshi M, Choi BW (1994) Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. appl. Phycol. 6: 159–176.Google Scholar
  153. Saito T, Saito A, Oka N (1966) Clinical applications ofChlorella dosage. Shindan to Shinyaku 3: 61–64. (Japanese)Google Scholar
  154. Sano T (1993) Culture, chemistry and utilization ofChlorella. In Oishi K (ed.), Science of Algae. Asakura Shoten, Tokyo: 100–108. (Japanese)Google Scholar
  155. Sano T, Kaya K (1995) Oscillamide Y, a chymotrypsin inhibitor from toxicOscillatoria agardhii. Tetrahedron Lett. 36: 5933–5936.Google Scholar
  156. Sano T, Tanaka Y (1987) Effect of dried, powderedChlorella vulgaris on experimental athersclerosis and alimentary hypercholesterolemia in cholesterol-fed rabbits. Artery 14: 76–84.PubMedGoogle Scholar
  157. Santillan C (1982) Mass production ofSpirulina. Experientia 38: 40–43.Google Scholar
  158. Sato M, Yoshinaka R, Morimoto H, Kuroshima R, Matuoka Y, Yanagawa T, Ikeda S (1984) Nutritive assessment ofEuglena as food for fish at early stage II. Nutritive value ofEuglena diet for rainbow trout fingerlings. Suisan Zoshoku 32: 88–91. (Japanese)Google Scholar
  159. Sawayama S, Inoue S, Yokoyama S (1994) Continuous culture of hydrocarbon-rich microalgaBotryococcus braunii in secondarily treated sewage. Appl. Microbiol. Biotechnol. 41: 729–733.Google Scholar
  160. Sawayama S, Minowa T, Dote Y, Yokoyama S (1992) Growth of the hydrocarbon-rich microalgaeBotryococcus braunii in secondarily treated sewage. Appl. Microbiol. Biotechnol. 38: 135–138.Google Scholar
  161. Scott JM (1981) The vitamin B12 requirement of marine rotiferBrachionus plicatilis. J. mar. biol. Ass. U.K. 61: 983–994.Google Scholar
  162. Sekino K, Shiraiwa Y (1995) CO2 release from the culture of calcifying and noncalcifying marine unicellular algae. J. mar. Biotechnol. 3: 101–104.Google Scholar
  163. Shigeoka S, Nakano Y (1989) Physiological functions ofEuglena organelle. Iden 40 (4): 60–65. (Japanese)Google Scholar
  164. Shin HJ, Matsuda H, Murakami M, Yamaguchi K (1996a) Agardhipeptins A and B, two new cyclic hepta- and octapeptides from the cyanobacteriumOscillatoria agardhii (NIES-204). Tetrahedron (in press).Google Scholar
  165. Shin HJ, Murakami M, Matsuda H, Yamaguchi K (1996b) Microviridins D–F, serine protease inhibitors from the cyanobacteriumOscillatoria agardhii (NIES-204). Tetrahedron 52: 8159–8168.Google Scholar
  166. Shin HJ, Murakami M, Matsuda H, Ishida K, Yamaguchi K (1995) Oscillapeptin, an elastase and chymotrypsin inhibitor from the cyanobacteriumOscillatoria agardhii (NIES-204). Tetrahedron Lett. 36: 5235–5238.Google Scholar
  167. Shiomi K (1994) Natural toxins. In Jpn. Soc. Fish. Sci. (ed.), Recent Advances in Fisheries Science. Koseisha-Koseikaku, Tokyo: 375–379. (Japanese)Google Scholar
  168. Shirai M, Ohtake A, Sano T, Matsumoto S, Sakamoto T, Sato A, Aida T, Harada K, Shimada T, Suzuki M, Nakano M (1991) Toxicity and toxins of natural blooms and isolated strains ofMicrocystis spp. (Cyanobacteria) and improved procedure for purification of cultures. Appl. environ. Microbiol. 57: 1241–1245.PubMedGoogle Scholar
  169. Sode K, Hatano N, Tatara M (1996a) Cloning of a marine cyanobacterial promoter for foreign gene expression using a promoter probe vector. Appl. Biochem. Biotech. 59: 349–355.Google Scholar
  170. Sode K, Oozeki M, Asakawa K, Burgess JG, Matsunaga T (1994) Isolation of a marine cyanophage infecting the marine unicellular cyanobacterium,Synchococcus sp. NKBG 042902. J. mar. Biotechnol. 1: 189–192.Google Scholar
  171. Sode K, Hayashi T, Tatara M, Hatano N, Yoshida H, Takeyama H, Oshiro T, Matsunaga T (1996b) Recovery of a marine cyanobacterial recombinant product using fish-feed organisms. J. mar. Biotechnol. 4: 82–86.Google Scholar
  172. Sonoda M (1972) Effect ofChlorella extract on pregnancy anemia. Jpn. J. Nutrition 30: 218–225. (Japanese)Google Scholar
  173. Sonoda M, Okuda M (1978) Effect ofChlorella on neurosis at puberty. Shindan to Shinyaku 15: 85–88. (Japanese)Google Scholar
  174. Sue S, Sugiya K, Furuki M, Shimizu T, Inoue Y, Nakamoto H, Hiyama T (1995) Nucleotide sequence of the psaD gene from thermophilic cyanobacteriumSynechococcus vulcanus. Photosynth. Res. 46: 265–268.Google Scholar
  175. Suzuki O (1987) Research and development in manufacturing techniques of microbial essential fatty acids. Bidec News (51): 12–15. (Japanese)Google Scholar
  176. Takagi Y, Fukino H, Yamane Y (1990) Effects ofSpirulina on acute nephrotoxicity. Abstr. Papers, the 110th Ann. Meetg. Jpn. Pharmacol. Soc. 209. (Japanese)Google Scholar
  177. Takano H, Takai R, Manabe E, Matsunaga T (1995) Production of coccolith particle by coccolithophorid algaEmiliania huxleyi. J. mar. Biotechnol. 3: 93–96.Google Scholar
  178. Takano H, Jeon J, Burgess JG, Manabe E, Izumi Y, Okazaki M, Matsunaga T (1994) Continuous production of extracellular ultrafine calcite particles by the marine coccolithophorid algaPleurochrysis carterae. Appl. Microbiol. Biotechnol. 40: 946–950.Google Scholar
  179. Takenaka H, Yamaguchi Y, Teramoto S, Tanaka N, Hori M, Seki H, Hiwatari T (1996a) Evaluation of the mutagenic properties of the coccolithophorePleurochrysis carterae (Haptophyceae) as a potential human food supplement. J. appl. Phycol. 8: 1–3.Google Scholar
  180. Takenaka H, Yamaguchi Y, Teramoto S, Tanaka N, Hori M, Seki H, Nishimori T, Morinaga T (1996b) Safety evaluation ofPleurochrysis carterae as a potential food supplement. J. mar. Biotechnol. 3: 274–277.Google Scholar
  181. Takeshima Y (1996) Efficient expression of foreign genes in cyanobacteria. Biosci. Bioind. 54: 100–104. (Japanese)Google Scholar
  182. Takeshima Y, Hagiwara H (1991) Expression of foreign genes in cyanobacteria. Biosci. Bioind. 49: 1263–1268. (Japanese)Google Scholar
  183. Takeuchi Y, Yoneyama K, Konnai M, Takematsu T (1987) Physiological effects of a water extract ofChlorella vulgaris on the growth of plants. J. Jpn. Soc. Turfgrass Sci. 15: 11–16.Google Scholar
  184. Takeyama H, Nakamura N, Matsunaga T (1989) Transformation of marine cyanobacteriumSynechococcus sp. by electroporation. In Miyachi S, Karube I, Ishida Y (eds), Current Topics in Marine Biotechnology. Jpn. Soc. Mar. Biotechnol., Tokyo: 159–160.Google Scholar
  185. Takeyama H, Iwamoto K, Hata S, Takano H, Matsunaga T (1996) DHA enrichment of rotifers: A simple two-step culture using the unicellular algaeChlorella regularis andIsochrysis galbana. J. mar. Biotechnol. 3: 244–247.Google Scholar
  186. Tamura Y, Nishigaki S, Maki T, Shimamura Y, Noi Y (1978) Biological chemical examination onChlorella tablets. Food Sanit. Res. 28: 753–759. (Japanese)Google Scholar
  187. Tanabe Y (1979) Phycocyanin. New Food Ind. 21 (2): 43–46. (Japanese)Google Scholar
  188. Tanaka K, Konishi F, Himeno K, Taniguchi K, Nomoto K (1984) Augmentation of antitumor resistance by a strain of unicellular green algaChlorella vulgaris. Cancer Immunol. Immunother. 17: 90–94.PubMedGoogle Scholar
  189. Tanaka N (1991) Large-scale culture system for benthic microalgae. NOAA Tech. Rep. NMFS 102: 83–88.Google Scholar
  190. Tani Y, Okumura M, Ii S (1987) Liquid wax ester production byEuglena gracilis. Agric. biol. Chem. 51: 225–230.Google Scholar
  191. Tatsuzawa H, Takizawa E (1995) Changes in fatty acid composition ofPavlova lutheri (Prymnesiophyceae) affected by culturing conditions. Fisheries Sci. 61: 363–364.Google Scholar
  192. Terao K, Ito E, Murakami M, Yamaguchi K (1989) Histopathological studies on experimental marine toxin poisoning — III. Morphological changes in the liver and thymus of male ICR mice induced by goniodomin A, isolated from the dinoflagellateGoniodoma pseudogoniaulax. Toxicon 27: 269–271.PubMedGoogle Scholar
  193. Tokuda H, Nishino H, Shirahashi H, Murakami N, Nagatsu A, Sakakibara J (1996) Inhibition of 12-O-tetradecanoylphorbol-13-acetate promoted mouse skin papilloma by digalactosyl diacylglycerols from the freshwater cyanobacteriumPhormidium tenue. Cancer Lett. 104: 91–96.PubMedGoogle Scholar
  194. Tokuyasu M (1983) Examples of diets for infants' and children's nutritional guidance and their effects. Jpn. J. Nutrn. 41: 273–283. (Japanese)Google Scholar
  195. Tsuchihashi N, Watanabe T, Takai Y (1987) Effects ofSpirulina on appendix contents of rats. Bull. Chiba Coll. Health Sci. 5 (2): 27–30. (Japanese)Google Scholar
  196. Tsuda M, Sasaki T, Kobayashi J (1994) Amphidinolide L, a new cytotoxic 27-membered macrolide from the cultured dinoflagellateAmphidinium sp. J. org. Chem. 59: 3734–3737.Google Scholar
  197. Uki E, Kikuchi S (1979) Food value of six benthic micro-algae on growth of juvenile abalone,Haliotis discuss hannai. Bull. Tohoku Fish. Res Lab. 40: 47–52. (Japanese, with English summary)Google Scholar
  198. Wachi Y, Burgess JG, Takahashi J, Nakamura N, Matsunaga T (1995) Tyrosinase inhibition by the water-soluble fraction of marine microalgae. J. mar. Biotechnol. 2: 210–213. Watanabe MF, Harada K, Carmichael WW, Fujiki H (eds) (1996) Toxic Microcystis. CRC Press Inc., Boca Raton, 262 pp.Google Scholar
  199. Watanabe T, Liao WL, Takeuchi T, Yamamoto H (1990) Effect of dietarySpirulina supplementation on growth performance and flesh lipids of cultured striped jack. J. Tokyo Univ. Fish. 77: 231–239. (Japanese, with English summary)Google Scholar
  200. Winder JS, Cannell RJP, Walker JM, Delbarre S, Francisco C, Farmer PB (1989) Glycosidase inhibitors from algae. Biochem. Soc. Trans. 17: 1030–1031.PubMedGoogle Scholar
  201. Yamada K (1974) A review onSpirulina. J. Ferment. Assoc., Jpn. 32: 131–134. (Japanese)Google Scholar
  202. Yamagishi Y, Makawa M, Suzuki K, Hara T, Warita F (1962) Therapy for gastric ulcer withChlorella. Jpn. Med. J. 1997: 25–27. (Japanese)Google Scholar
  203. Yamaguchi K (1989) Utilization of plankton — 7. Plankton as energy resources (3). Kaiyo to Seibutsu 11: 15–19. (Japanese)Google Scholar
  204. Yamaguchi K (1991) Utilization of plankton — 12. Plankton as fine chemical resources (3). Kaiyo to Seibutsu 13: 340–344. (Japanese)Google Scholar
  205. Yamaguchi K (ed.) (1992a) Utilization of Microalgae. Koseisha-Koseikaku, Tokyo, 132 pp. (Japanese)Google Scholar
  206. Yamaguchi K (1992b) Utilization of plankton — 14. Plankton as fine chemical resources (5). Kaiyo to Seibutsu 14: 431–433. (Japanese)Google Scholar
  207. Yamaguchi K (1992c) Chemistry and utilization of microalgae. BIO-medica 7: 269–274. (Japanese)Google Scholar
  208. Yamaguchi K, Murakami M, Okino T (1989) Screening of angiotensin-converting enzyme inhibitory activities in microalgae. J. appl. Phycol. 1: 271–275.Google Scholar
  209. Yamaguchi K, Kawamata M, Murakami M, Konosu S, Ben-Amotz A (1988) Extractive nitrogenous components of halotolerant algaDunaliella bardawil. Nippon Suisan Gakkaishi 54: 239–243.Google Scholar
  210. Yamaguchi K, Nakano H, Murakami M, Konosu S, Nakayama O, Kanda M, Nakamura A, Iwamoto H (1987b) Lipid composition of a green alga,Botryococcus braunii. Agric. biol. Chem. 51: 493–498.Google Scholar
  211. Yamaguchi K, Kato H, Murakami M, Watanabe K, Konosu S, Hirano T, Watanabe T, Yamamoto H, Yoshida N, Kitajima C (1987a) Effects of aSpirulina-supplemented diet on flesh quality, taste and flavor of cultured red sea bream. Absts. Papers, Ann. Meetg. Jpn. Soc. Fish. Sci. 45. (Japanese)Google Scholar
  212. Yamaguchi M (1979) Problems in the utilization ofSpirulina. New Food Ind. 21: 34–41. (Japanese)Google Scholar
  213. Yamaoka Y (1995) Capture and absorption of polluting elements by the marine microalgaDunaliella. Mar. Biotechnol. Kenkyu Kaiho 8 (2): 3–15. (Japanese)Google Scholar
  214. Yamaoka Y, Takimura O, Fuse H, Kamimura K (1995) β-Carotene production byDunaliella salina in fed-batch and semi-continuous cultures under nutrient supplement. Seibutsu-Kogaku Kaishi 72: 111–114. (Japanese, with English summary)Google Scholar
  215. Yamaoka Y, Takimura O, Fuse H, Kamimura K, Manabe E, Takano H, Hirano M (1992) Effects of various environmental factors on β-carotene production byDunaliella salina. Hakko-Kogaku Kaishi 70: 25–28. (Japanese, with English summary)Google Scholar
  216. Yanagihashi S, Yanagisawa T, Kawasaki T (1984) Settlement of floating larvae in the seed production of sea cucumber and subsequent feeds and rearing method. Suisan Zoshoku 32: 6–14. (Japanese)Google Scholar
  217. Yasumoto T (1992) Bioactive polyethers of ciguatera and symbiotic algae. In Yajima H, Shioiri T, Ohizumi Y (eds), The Second Series of Pharmaceutical Research and Development. Vol. 10, Marine Resources for Drug Discovery. Hirokawa Publ. Co., Tokyo: 377–391. (Japanese)Google Scholar
  218. Yasumoto T (1993) Marine Toxins. Chem. Rev. 93: 1897–1909.Google Scholar
  219. Yasumoto T, Nagai H (1990) Antifungal substances from plankton. In Yasumoto T (ed.), Bioactive Metabolites of Marine Microorganisms. Koseisha-Koseikaku, Tokyo: 65–72. (Japanese)Google Scholar
  220. Yasumoto T, Murata M, Satake M, Nagai H (1989) Marine phytoplanktons as a new source of bioactive polyethers. In Miyachi S, Karube I, Ishida Y (eds), Current Topics in Marine Biotechnology. Jpn. Soc. Mar. Biotechnol., Tokyo: 191–194.Google Scholar
  221. Yoneda T (1983) Production and preservation of concentratedChlorella and its utilization. Suisan no Kenkyu 2 (5): 52–58. (Japanese)Google Scholar
  222. Yoshida Y, Shimizu M, Kawai A, Ishida Y (1995) The unusual occurrence of picophytoplankton with enormous death of ayuPlecoglossus altivelis. Nippon Suisan Gakkaishi 61: 929–949. (Japanese)Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Katsumi Yamaguchi
    • 1
  1. 1.Laboratory of Marine Biochemistry, Graduate School of Agricultural Life SciencesThe University of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations