Foundations of Physics Letters

, Volume 9, Issue 4, pp 357–382 | Cite as

The chaotic ball: An intuitive analogy for EPR experiments

  • Caroline H Thompson
Article

Abstract

Actual realisations of EPR experiments donot demonstrate non-locality. A model is presented that should enable non-specialists as well as specialists to understand how easy it is to find realistic explanations for the observations. The model also suggests new areas where realistic (“hidden-variable”) models can give valid predictions whilst quantum mechanics fails. It offers straightforward explanations for some anomalies that Aspect was unable to account for, providing perhaps the first experimental evidence that a hidden-variable theory can besuperior to quantum mechanics. The apparent success of quantum mechanics in predicting results is shown to be largely due to the use of unjustifiable and biased analysis of the data. Data that has been discarded because it did not lead to a valid Bell's test may give further evidence that hidden variables exist.

Key words

realist EPR analogy experiments bias 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aspect, A., “Trois tests expérimentaux des inégalités de Bell par mesure de corrélation de polarisation de photons,” Ph.D. thesis, Université de Paris-Sud, Centre D'Orsay (1983).Google Scholar
  2. [2]
    Aspect, A., Dalibard, J., and Roger, G., “Experimental test of Bell's inequalities using time-varying analyzers,”Phys. Rev. Lett. 49, 1804–1807 (1982).Google Scholar
  3. [3]
    Aspect, A., Grangier, P., and Roger, G., “Experimental realization of Einstein-Podolsky-Rosen-Bohmgedanken experiment: A new violation of Bell's inequalities,”Phys. Rev. Lett. 49, 91–94 (1982).Google Scholar
  4. [4]
    Baggott, J.,The Meaning of Quantum Theory (Oxford University Press, Oxford, 1992).Google Scholar
  5. [5]
    Bell, J. S.,Physics 1, 195 (1964).Google Scholar
  6. [6]
    Bohm, D.,Quantum Mechanics (Prentice-Hall, Englewood Cliffs, 1951).Google Scholar
  7. [7]
    Caser, S., “Objective local theories and the symmetry between analysers,”Phys. Lett. A 102, 152–8 (1984).Google Scholar
  8. [8]
    Caser, S. “Quantum mechanics as the limit of a symmetric local theory,”Phys. Lett. A 121, 331–333 (1987).Google Scholar
  9. [9]
    Clauser, J. F., and Horne, M. A.,Phys. Rev. D 10, 526–35 (1974).Google Scholar
  10. [10]
    Clauser, J. F., Horne, M. A., Shimony, A., and Holt, R. A.,Phys. Rev. Lett. 23, 880–884 (1969).Google Scholar
  11. [11]
    Clauser, J. F., and Shimony, A.,Rep. Prog. Phys. 41, 1881–1927 (1978).Google Scholar
  12. [12]
    Einstein, A., Podolsky, B., and Rosen, N., “Can quantum-mechanical description of physical reality be considered complete?”Phys. Rev. 47, 777–780 (1935).Google Scholar
  13. [13]
    França, H. M., Marshall, T. W., Santos, E., and Watson, E. J., “Possible interference effect in Stern-Gerlach phenomenon,”Phys. Rev. A 46, 2265–2270 (1992).Google Scholar
  14. [14]
    Gilbert, B. C., and Sulcs, S., “An exception to Bell's theorem,” submitted toEur. J. Phys., (1996).Google Scholar
  15. [15]
    Grangier, P., Potasek, M. J., and Yurke, B., “Probing the phase coherence of parametrically generated photon pairs: A new test of Bell's inequalities,”Phys. Rev. A 38, 3132–3135 (1988).Google Scholar
  16. [16]
    Grangier, P., Roger, G., and Aspect, A., “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,”Eur. Lett. 1, 173–179 (1986).Google Scholar
  17. [17]
    Greenberger, D. M., “Two-particle versus three-particle EPR experiments,”Ann. N. Y. Acad. Sci. 755, 585–599 (1995).Google Scholar
  18. [18]
    Jack, C., “Sherlock Holmes investigates the EPR paradox,”Physics World, April (1995).Google Scholar
  19. [19]
    Kleinknecht, K.,Detectors for Particle Radiation (Cambridge University Press, Cambridge, 1986).Google Scholar
  20. [20]
    Lepore, V. L., and Selleri, F., “Do performed optical tests disprove local realism?”Found. Phys. Lett. 3, 203–220 (1990).Google Scholar
  21. [21]
    Marshall, T. W., and Santos, E., “Comment on ‘Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences'”:Eur. Lett. 3, 293–6 (1987).Google Scholar
  22. [22]
    Marshall, T. W., Santos, E., and Selleri, F., “Local realism has not been refuted by atomic-cascade experiments,”Phys. Lett. A 98, 5–9 (1983).Google Scholar
  23. [23]
    Pascazio, S., “Variable detection probability models for Einstein-Podolsky-Rosen-type experiments,”Quantum Mechanics versus Local Realism: The Einstein-Podolsky-Rosen Paradox, F. Selleri, ed. (Plenum, New York, 1988), p391.Google Scholar
  24. [24]
    Pearle, P., “Hidden-variable example based upon data rejection,”Phys. Rev. D 2, 1418–25 (1970).Google Scholar
  25. [25]
    Rae, A.,Quantum Mechanics (McGraw-Hill, New York, 1981).Google Scholar
  26. [26]
    Rarity, J. G., and Tapster, P. R., “Experimental violation of Bell's inequality based on phase and momentum,”Phys. Rev. Lett. 64, 2495–2498 (1990).Google Scholar
  27. [27]
    Risco-Delgado, R., “The variable detection approach: a wave particle model,”Found. Phys. Lett. 6, 399–428 (1993).Google Scholar
  28. [28]
    Selleri, F.,Quantum Mechanics Versus Local Realism: The Einstein-Podolsky-Rosen Paradox (Plenum, New York, 1988).Google Scholar
  29. [29]
    Shurcliff, W. A., and Ballard, S. S.,Polarized Light (Van Nostrand, New York, 1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Caroline H Thompson
    • 1
  1. 1.Department of Computer ScienceUniversity of WalesAberystwythUnited Kingdom

Personalised recommendations