Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Conductance distributions in random resistor networks. Self-averaging and disorder lengths

  • 95 Accesses

  • 12 Citations

Abstract

The self-averaging properties of the conductanceg are explored in random resistor networks (RRN) with a broad distribution of bond strengthsP(g)∼g μ−1. The RRN problem is cast in terms of simple combinations of random variables on hierarchical lattices. Distributions of equivalent conductances are estimated numerically on hierarchical lattices as a function of sizeL and the distribution tail strength parameter μ. For networks above the percolation threshold, convergence to a Gaussian basin is always the case, except in the limit μ→0. Adisorder length ξD is identified, beyond which the system is effectively homogeneous. This length scale diverges as ξD∼∣µ∣−v (ν is the regular percolation correlation length exponent) when the microscopic distribution of conductors is exponentially wide (μ→0). This implies that exactly the same critical behavior can be induced by geometrical disorder and by strong bond disorder with the bond occupation probabilityp↔μ. We find that only lattices at the percolation threshold have renormalized probability distributions in aLevy-like basin. At the percolation threshold the disorder length diverges at a critical tail strength µc as ∣µ−∣−z withz∼3.2±0.1, a new exponent.Critical path analysis is used in a generalized form to give the macroscopic conductance in the case of lattices abovep c.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. Baudet, E. Charlaix, E. Clement, E. Gyron, F. Hulin, and C. Leroy, inScaling Phenomena in Disordered Systems, R. Pynn and A. Skeltorp, (NATO ASI Series, 1985).

  2. 2.

    J. P. Bouchaud and A. Georges,Phys. Rep. 195:127 (1990).

  3. 3.

    B. I. Shklovskii and A. L. Efros,Electronic Properties of Doped Semiconductors, (Springer-Verlag, Berlin, 1984).

  4. 4.

    G. D. Cody, T. H. Geballe, and P. Sheng, eds.,Physical Phenomena in Granular Materials (Materials Research Society, Pittsburgh, Pensylvania, 1990).

  5. 5.

    P. G. Toledo, H. T. Davis, and L. E. Scriven,Physica A 185:228 (1992).

  6. 6.

    B. I. Halperin, S. Feng, and P. N. Sen,Phys. Rev. Lett.,54:2391 (1985).

  7. 7.

    J. P. Straley,J. Phys. C. 15:2333, 2343; B. I. Halperin, S. Feng, and P. N. Sen,Phys. Rev. B 35:197 (1987).

  8. 8.

    T. C. Lubensky and A. M. S. Tremblay,Phys. Rev. B 34:3408 (1986); see also T. Schlösser and H. Spohn,J. Stat. Phys. 69:955 (1992).

  9. 9.

    J. Machta,Phys. Rev. B. 37:7892 (1988).

  10. 10.

    B. Derrida and R. B. Griffiths,Europhys. Lett. 8:111 (1989).

  11. 11.

    T. Halpin-Healy,Phys. Rev. A 42:711 (1990).

  12. 12.

    S. Roux, A. Hansen, L. R. da Silva, L. S. Lucena, and R. B. Pandey,J. Stat. Phys. 65:183 (1991).

  13. 13.

    V. Ambegaokar, B. I. Halperin, and J. S. LangerPhys. Rev. B 4:2612 (1971).

  14. 14.

    A. N. Berker and S. Ostlund,J. Phys. C. 12:4961 (1979).

  15. 15.

    L. Arcangelis, S. Redner, and A. Coniglio,Phys. Rev. B. 31:4725 (1985).

  16. 16.

    S. Tyč and B. I. Halperin,Phys. Rev. B 39:877 (1989); see also B. I. Halperin,Physica D 38:179 (1989).

  17. 17.

    J. Machta, R. A. Guyer, and S. M. Moore,Phys. Rev. B 33:4818 (1988).

  18. 18.

    A.-M. S. Tremblay and J. Machta,Phys. Rev. B 40:5131 (1989).

  19. 19.

    R. F. Angulo and E. Medina,Physica A 191:410 (1992).

  20. 20.

    V. Ambegaokar, S. Cochran, and J. Kurkijarvi,Phys. Rev. B 8:3682 (1973); see also E. Charlaix, E. Guyon, and S. Roux, inTransport in Porous Media 2 (Riedel, Dordrecht, 1987).

  21. 21.

    A. J. Katz and A. H. Thompson,Phys. Rev. B 34:8179 (1986).

  22. 22.

    Pierre Le Doussal,Phys. Rev. B 39:4816 (1989).

  23. 23.

    T. Bourbie, O. Coussy, and B. Zinszner,Acoustics in Porous Media (Editions Technip, 1987).

  24. 24.

    S. Kirkapatrick,Rev. Mod. Phys. 45:574 (1973).

  25. 25.

    A. Aponte, P. G. Toledo, R. F. Angulo, and E. Medina, unpublished.

  26. 26.

    B. Derrida,Phys. Rep. 103:29 (1984).

  27. 27.

    B. Derrida,Phys. Rev. B 24:2613 (1981).

  28. 28.

    B. Derrida, inÉcole de Physique de la Matière Condensée (Beg-Rohu, 1993) [lecture notes].

  29. 29.

    D. Sherrington and S. Kirkpatrick,Phys. Rev. Lett. 35:1792 (1975).

  30. 30.

    J. Cook and B. Derrida,J. Stat. Phys. 57:89 (1989).

  31. 31.

    Y.-C. Zhang,Physica A 170:1 (1991).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Angulo, R.F., Medina, E. Conductance distributions in random resistor networks. Self-averaging and disorder lengths. J Stat Phys 75, 135–151 (1994). https://doi.org/10.1007/BF02186283

Download citation

Key Words

  • Resistor networks
  • hierarchical lattices
  • disorder
  • probability distributions