Journal of Applied Phycology

, Volume 5, Issue 3, pp 297–306 | Cite as

Isolation and identification of antialgal substances produced byPseudomonas aeruginosa

  • A. Dakhama
  • J. de la Noüe
  • M. C. Lavoie
Article

Abstract

Pseudomonas aeruginosa strongly inhibited the growth of green microalgae and cyanobacteria by the release of low molecular weight, thermoresistant factors. The antialgal substances were resistant to various enzymes and remained active in agar after a 3-months storage period at 4 °C in the absence of light. The results indicate that inhibition of algal growth was mediated by the phenazine pigments released by the bacterium. Pyocyanine and an unidentified pale blue pigment had no effect on algal growth, whereas 1-hydroxyphenazine and oxychlororaphine showed strong antialgal activity.

Key words

microalgae antialgal substances phenazines Pseudomonas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong AV, Stewart-Tull DES (1971) The site of the activity of extracellular products ofPseudomonas aeruginosa in the electron-transport chain in mammalian respiration. J. med. Microbiol. 4: 263–270.PubMedGoogle Scholar
  2. Armstrong AV, Stewart-Tull DES, Roberts SB (1971) Characterization of thePseudomonas aeruginosa factor that inhibits mouse-liver mitochondria respiration. J. med. Microbiol. 4: 249–262.PubMedGoogle Scholar
  3. Baron SS, Rowe JJ (1981) Antibiotic action of pyocyanine. Antimicrob. Agents Chemother. 20: 814–820.PubMedGoogle Scholar
  4. Baron SS, Terranova G, Rowe JJ (1989) Molecular mechanism of the antimicrobial action of pyocyanine. Current Microbiol. 18: 223–230.Google Scholar
  5. Berger PS, Rho J, Gunner HB (1979) Bacterial suppression ofChlorella by hydroxylamine production. Water Res. 13: 267–273.Google Scholar
  6. Brathwaite CWD, Cunningham HGA (1982) Inhibition ofSclerotium rolfsii by Pseudomonas aeruginosa. Can. J. Bot. 60: 237–239.Google Scholar
  7. Caltrider PG (1967) Pyocyanine. In Gottlieb D, Shaw PD (eds), Antibiotics. Springer-Verlag, New York, 117–121.Google Scholar
  8. Chang PC, Blackwood AC (1969) Simultaneous production of three phenazine pigments byPseudomonas aeruginosa Mac 436. Can J. Microbiol. 15: 439–444.PubMedGoogle Scholar
  9. Clarke PH, Ornston LN (1975) Metabolic pathways and regulation. In Clarke PH, Richmond MH (eds), Genetics and Biochemistry ofPseudomonas. J. Wiley & Sons, London, 191–340.Google Scholar
  10. Colwell FS, Speidel HK (1985) Diffusion through a double-sided plate: Development of a method to study alga-bacterium interactions. Appl. environ. Microbiol. 50: 1357–1360.Google Scholar
  11. Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: Novel structure of an iron-chelating growth promoter forPseudomonas aeruginosa. Proc. Natl Acad. Sci. 78: 4256–4260.PubMedGoogle Scholar
  12. Dakhama A, Lavoie MC, de la Noüe J (1989) Stimulatory and inhibitory effects ofPseudomonas on the growth of algae. Can. Tech. Rep. Fish. Aquat. Sci. O (1714): 46–51.Google Scholar
  13. Dauta A (1982) Conditions de développement du phytoplancton. Etude comparative du comportement de huit espéces en culture. 1. Détermination des paramétres de croissance en fonction de la lumiére et de la température. Ann. Limnol. 18: 217–262.Google Scholar
  14. Freedman DJ, Kondo JK, Willrett DL (1989) Antagonism of foodborne bacteria byPseudomonas spp.: A possible role for iron. J. Food Protect. 52: 484–489.Google Scholar
  15. Gerber NN (1969) New microbial phenazines. J. Heterocycl. Chem. 6: 297–300.Google Scholar
  16. Hamada S, Ooshima T (1975) Production and properties of bacteriocins (mutacins) fromStreptococcus mutans. Arch. Oral Biol. 20: 641–648.PubMedGoogle Scholar
  17. Hassan MH, Fridovich I (1980) Mechanism of the antibiotic action of pyocyanine. J. Bact. 141: 156–163.PubMedGoogle Scholar
  18. Hayashida S, Tanaka S, Teramoto T, Nanri N, Yoshino S, Furukawa K (1991) Isolation of anti-algalPseudomonas stutzeri strains and their lethal activity forChattonella antiqua. Agric. Biol. Chem. 55: 787–790.Google Scholar
  19. Hays EE, Wells IC, Katzman PA, Cain CK, Jacobs FA, Thayer SA, Doisy EA, Gaby WL, Roberts EC, Muir RD, Caroll CJ, Jones LR, Wade NJ (1945) Antibiotic substances produced byPseudomonas aeruginosa. J. biol. Chem. 159: 725–750.Google Scholar
  20. Herbert RB, Holliman FG (1969) Pigments ofPseudomonas species. Part II. Structure of aeruginosin Br. J. Chem. Soc. C: 2517–2520.Google Scholar
  21. Hisatsuka K, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid byPseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric. Biol. Chem. 35: 686–692.Google Scholar
  22. Holliman FG (1969) Pigments of Pseudomonas species. Part I. Structure and synthesis of aeruginosin Am. J. Chem. Soc. C: 2514–2516.Google Scholar
  23. Holloway BW (1975) Genetic organization ofPseudomonas. In Clarke PH, Richmond MH (eds), Genetics and Biochemistry ofPseudomonas. J. Wiley & Sons, London, 133–161.Google Scholar
  24. Inskeep WP, Bloom PR (1985) Extinction coefficients of cholorophyll a and b in N,N-Dimethylformamide and 80‰ acetone. Plant Physiol. 77: 483–485.Google Scholar
  25. Jawetz E, Melnick JL, Adelberg EA (1980) Review of Medical Microbiology. 14th edn. Lange Medical Publications, California, 528 pp.Google Scholar
  26. Jones AK (1982) The interaction of algae and bacteria. In Bull AT, Slater JH (eds), Microbial Interactions and Communities. Academic Press, New York, 189–247.Google Scholar
  27. Kanner D, Gerber NN, Bartha R (1978) Pattern of phenazine pigment production by a strain ofPseudomonas aeruginosa. J. Bact. 134: 690–692.PubMedGoogle Scholar
  28. MacDonald JC 1963. Biosynthesis of pyocyanine. Can. J. Microbiol. 9: 809–819.Google Scholar
  29. Okuda S, Ito T, Ito K (1987) Pyocyanine as a potent inhibitor for the growth ofRhodopseudomonas sphaeroides B5. Current Microbiol. 16: 167–169.Google Scholar
  30. Parrot M, Caufield PW, Lavoie MC (1990) Preliminary characterization of four bacteriocins fromStreptococcus mutans. Can. J. Microbiol. 36: 123–130.PubMedGoogle Scholar
  31. Saks NM, Kahn EG (1979) Substrate competition between a salt marsh diatom and a bacterial population. J. Phycol. 15: 17–21.Google Scholar
  32. Schoental R (1941) The nature of the antibacterial agents present inPseudomonas pyocyanea cultures. Br. J. exp. Pathol. 22: 137–147.Google Scholar
  33. Sierra G, Veringa HA (1958) Effect of Oxy-chlororaphin on the growth in vitro ofStreptomyces species and some pathogenic fungi. Nature (London) 182: 265.Google Scholar
  34. Stingfellow WT, Pratt JR (1988) Inhibition of algal growth by pigmentedPseudomonas exudates. Abstr. Am. Soc. Microbiol. Q-92: 289.Google Scholar
  35. Toohey JI, Nelson CD, Krotov G (1965) Toxicity of phenazine carboxylic acids to some bacteria, algae, higher plants, and animals. Can. J. Bot. 43: 1151–1155.Google Scholar
  36. Watson D, MacDermot J, Wilson R, Cole PJ, Taylor GW (1986) Purification and structural analysis of pyocyanine and 1-hydroxyphenazine. Eur. J. Biochem. 159: 309–313.PubMedGoogle Scholar
  37. Wendenbaum S, Demange P, Dell A, Meyer JM, Abdallah MA (1983) The structure of pyoverdinePa, the siderophore ofPseudomonas aeruginosa. Tetrahedron Lett. 24: 4877–4880.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • A. Dakhama
  • J. de la Noüe
  • M. C. Lavoie
    • 1
  1. 1.Département de BiochimieUniversité LavalSainte-FoyCanada

Personalised recommendations