Foundations of Physics Letters

, Volume 9, Issue 1, pp 25–41 | Cite as

Does the universe in fact contain almost no information?

  • Max Tegmark
Article

Abstract

At first sight, an accurate description of the state of the universe appears to require a mind-bogglingly large and perhaps even infinite amount of information, even if we restrict our attention to a small subsystem such as a rabbit. In this paper, it is suggested that most of this information is merely apparent, as seen from our subjective viewpoints, and that the algorithmic information content of the universe as a whole is close to zero. It is argued that if the Schrödinger equation is universally valid, then decoherence together with the standard chaotic behavior of certain non-linear systems will make the universe appear extremely complex to any self-aware subsets that happen to inhabit it now, even if it was in a quite simple state shortly after the big bang. For instance, gravitational instability would amplify the microscopic primordial density fluctuations that are required by the Heisenberg uncertainty principle into quite macroscopic inhomogeneities, forcing the current wavefunction of the universe to contain such Byzantine super-positions as our planet being in many macroscopically different places at once. Since decoherence bars us from experiencing more than one macroscopic reality, we would see seemingly complex constellations of starsetc., even if the initial wavefunction of the universe was perfectly homogeneous and isotropic.

Key words

complexity chaos symmetry-breaking decoherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Yukawa,Prog. Theo. Phys. Suppl. 37&38, 512 (1966).Google Scholar
  2. [2]
    H. Yamamoto,Phys. Rev. D 30, 1727 (1984).Google Scholar
  3. [3]
    K. E. Plokhotnikov,Sov. Phys. Doklady 36, 38 (1991).Google Scholar
  4. [4]
    R. J. Solomonoff,Inf. Control 7, 1 (1964).Google Scholar
  5. [5]
    A. N. Komogorov,Inf. Transmission 1, 3 (1965).Google Scholar
  6. [6]
    A. N. Kolmogorov,IEEE Trans. Inf. Theory 14, 662 (1968).Google Scholar
  7. [7]
    A. N. Kolmogorov,Usp. Mat. Nauk 25, 602 (1970).Google Scholar
  8. [8]
    G. J. Chaitin,Ass. Comput. Mach. 13, 547 (1966).Google Scholar
  9. [9]
    G. J. Chaitin,Scient. Am. 232(5), 47 (1975).Google Scholar
  10. [10]
    G. J. Chaitin,Ass. Comput. Mach. 22, 245 (1975).Google Scholar
  11. [11]
    G. J. Chaitin,IBM J. Res. Dev. 21, 350 (1977).Google Scholar
  12. [12]
    G. J. Chaitin,Algorithmic Information Theory, (Cambridge University Press, Cambridge, 1987).Google Scholar
  13. [13]
    P. Gacs,P. Soviet Math. Dokl. 15, 1477 (1974).Google Scholar
  14. [14]
    L. A. Levin,Soviet Math. Dokl. 17, 522 (1976).Google Scholar
  15. [15]
    I. Stewart,Nature 332, 115 (1988).Google Scholar
  16. [16]
    W. H. Zurek,Nature 341, 119 (1989).Google Scholar
  17. [17]
    W. H. Zurek,Phys. Rev. A 40, 4731 (1989).Google Scholar
  18. [18]
    C. M. Caves,Phys. Rev. E 47, 4010 (1993).Google Scholar
  19. [19]
    E. Kolb and M. S. Turner,The Early Universe (Addison-Wesley, Reading, 1990).Google Scholar
  20. [20]
    E. P. Wigner,Phys. Rev. 40, 749 (1932).Google Scholar
  21. [21]
    Y. S. Kim & M. E. Noz,Phase Space Picture of Quantum Mechanics: Group Theoretical Approach (World Scientific, Singapore, 1991).Google Scholar
  22. [22]
    W. H. Zurek & J. P. Paz,Phys. Rev. Lett. 72, 2508 (1994).Google Scholar
  23. [23]
    H. Everett III,Rev. Mod. Phys. 29, 454 (1957).Google Scholar
  24. [24]
    H. Everett III,The Many-Worlds Interpretation of Quantum Mechanics, B. S. DeWitt and N. Graham, eds. (Princeton University Press, Princeton, 1986).Google Scholar
  25. [25]
    J. A. Wheeler,Rev. Mod. Phys. 29, 463 (1957).Google Scholar
  26. [26]
    L. M. Cooper & D. van Vechten,Am. J. Phys. 37, 1212 (1969).Google Scholar
  27. [27]
    L. N. Cooper, “Wave function and observer in quantum theory”, inThe Physicist's Conception of Nature, J. Mehra, ed. (Reidel, Dordrecht, 1983).Google Scholar
  28. [28]
    B. S. DeWitt,Phys. Today 23 (9), 30 (1971).Google Scholar
  29. [29]
    A. Peres & W. H. Zurek,Am. J. Phys. 50, 807 (1982).Google Scholar
  30. [30]
    Y. Ben-Dov,Found. Phys. 3, 383 (1990).Google Scholar
  31. [31]
    A. Kent,Int. J. Mod. Phys. 5, 1745 (1990).Google Scholar
  32. [32]
    E. J. Squires,Found. Phys. Lett. 3, 87 (1990).Google Scholar
  33. [33]
    H. D. Zeh,Found. Phys. 1, 69 (1970).Google Scholar
  34. [34]
    W. H. Zurek,Phys. Rev. D 24, 1516 (1981).Google Scholar
  35. [35]
    W. H. Zurek,Phys. Rev. D 26, 1862 (1982).Google Scholar
  36. [36]
    W. H. Zurek,Phys. Today 44 (10), 36 (1991).Google Scholar
  37. [37]
    E. Joos and H. D. Zeh,Z. Phys. B 59, 223 (1985).Google Scholar
  38. [38]
    M. Tegmark,Found. Phys. Lett. 6, 571 (1993).Google Scholar
  39. [39]
    S. Lloyd & H. Pagels,Annals of Phys. 188, 186 (1988).Google Scholar
  40. [40]
    S. Lloyd,Phys. Rev. A 39, 5328 (1989).Google Scholar
  41. [41]
    S. W. Hawking,Nucl. Phys. B 239, 257 (1984).Google Scholar
  42. [42]
    T. Souradeep,ApJ 402, 375 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Max Tegmark
    • 1
  1. 1.Max-Planck-Institut für PhysikMünchenGermany

Personalised recommendations