Boundary-Layer Meteorology

, Volume 11, Issue 3, pp 355–361 | Cite as

The characteristics of turbulent velocity components in the surface layer under convective conditions

  • H. A. Panofsky
  • H. Tennekes
  • D. H. Lenschow
  • J. C. Wyngaard


It is proposed that the ratios of the standard deviations of the horizontal velocity components to the friction velocity in the surface layer under convective conditions depend only onz i /L wherez i is the height of the lowest inversion andL is the Monin-Obukhov length. This hypothesis is tested by using observations from several data sets over uniform surfaces and appears to fit the data well. Empirical curves are fitted to the observations which have the property that at largez i /-L, the standard deviations become proportional tow*, the convective scaling velocity.

Fluctuations of vertical velocity obtained from the same experiments scale withz/L, wherez is the height above the surface, in good agreement with Monin-Obukhov theory.


Standard Deviation Surface Layer Velocity Component Vertical Velocity Horizontal Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Businger, J. A.: 1959, ‘A Generalization of the Mixing-Length Concept’,J. Meteorol. 16, 516–523.Google Scholar
  2. Izumi, Y. and Caughey, J. S.: 1976, ‘Minnesota 1973 Atmospheric Boundary Layer Experiment Data Report’, AFCRL-TR-76-0038, 29 pp.Google Scholar
  3. Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’,J. Atmos. Sci. 33, 2152–2169.Google Scholar
  4. Lenschow, D. H.: 1970, ‘Airplane Measurements of Planetary Boundary Layer Structure’,J. Appl. Meteorol. 9, 874–884.Google Scholar
  5. Lenschow, D. H.: 1973, ‘Two Examples of Planetary Boundary Layer Modification over the Great Lakes’,J. Atmos. Sci. 30,568–581.Google Scholar
  6. Lenschow, D. H. and Agee, E. M.: 1976, ‘Preliminary Results from the Air Mass Transformation Experiment’,Bull. Am. Meteorol. Soc. 57, 1346–1355.Google Scholar
  7. Lumley, J. L. and Panofsky, H. A.: 1964,Structure of Atmospheric Turbulence, Wiley-Interscience, New York.Google Scholar
  8. Merry, M. and Panofsky, H. A.: 1976, ‘Statistics of Vertical Motion over Land and Water’,Quart. J. Roy. Meteorol. Soc. 102, 255–260.Google Scholar
  9. Pennell, W. T. and LeMone, M. A.: 1974, ‘An Experimental Study of Turbulence Structure in the Fair-Weather Trade Wind Boundary Layer’,J. Atmos. Sci. 31, 1308–1323.Google Scholar
  10. Readings, C. J., Haugen, D. A., and Kaimal, J. C.: 1974, ‘The 1973 Minnesota Atmospheric Boundary Layer Experiment’,Weather 29, 309–312.Google Scholar
  11. Willis, G. E. and Deardorff, J. W.: 1974, ‘A Laboratory Model of the Unstable Planetary Boundary Layer’,J. Atmos. Sci. 31, 1297–1307.Google Scholar
  12. Wyngaard, J. C. and Coté, O. R.: 1974, ‘The Evolution of a Convective Planetary Boundary Layer — a Higher-Order-Closure Model Study’,Boundary-Layer Meteorol. 7, 289–308.Google Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • H. A. Panofsky
    • 1
  • H. Tennekes
    • 1
  • D. H. Lenschow
    • 2
  • J. C. Wyngaard
    • 3
    • 4
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Cooperative Institute for Research in Environmental SciencesUniversity of Colorado/NOAABoulderUSA
  4. 4.Wave Propagation Laboratory, NOAABoulderUSA

Personalised recommendations