Journal of Applied Phycology

, Volume 6, Issue 2, pp 159–176 | Cite as

Structure and biosynthesis of toxins from blue-green algae (cyanobacteria)

  • Kenneth L. Rinehart
  • Michio Namikoshi
  • Byoung W. Choi


Microcystis andNodularia species produce cyclic hepta- and pentapeptides, microcystins and nodularin, respectively, both containing the same unusual C20 amino acid, abbreviated Adda. Biosynthesis of nodularin fromNodularia and especially of Adda employs a pathway similar to that employed byMicrocystis for producting microcystins. Nearly 30 new microcystins have been isolated in our laboratory from cyanobacteria species and their structures assigned, largely employing tandem FAB mass spectrometry (FABMS/CID/MS). Acyclic peptides, some of them presumed precursors of nodularin and microcystins, have now been isolated and characterized. The numerous analogs identified or synthesized allow the identification of important parameters in a structure-activity relationship study.

Key words

cyanobacterial toxins biosynthesis nodularin microcystins protein phosphatases stucture assignment mass spectrometry metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azevedo SMFO, Evans WR, Carmichael WW, Namikoshi M (1994) First report of microcystins from a Brazilian isolate of the cyanobacteriumMycrocystis aeruginosa. J. app. Phycol. 6: (in press).Google Scholar
  2. Botes DP, Kruger H, Viljoen CC (1982) Isolation and characterization of four toxins from the blue-green alga,Microcystis aeruginosa. Toxicon 20: 945–954.Google Scholar
  3. Botes DP, Tuinman AA, Wessels PL, Viljoen CC, Kruger H, Williams DH, Santikarn S, Smith RJ, Hammond SJ (1984) The structure of cyanoginosin-LA, a cyclic heptapeptide toxin from the cyanobacteriumMicrocystis aeruginosa. J. Chem. Soc. Perkin Trans. I: 2311–2318.Google Scholar
  4. Botes DP, Wessels PL, Kruger H, Runnegar MTC, Santikarn S, Smith RJ, Barna JCJ, Williams DH (1985) Structural studies on cyanoginosins-LR, -YR, -YA, and -YM, peptide toxins fromMicrocystis aeruginosa. J. Chem. Soc. Perkin Trans. I: 2747–2748.Google Scholar
  5. Carmichael WW (1988) Toxins of freshwater algae. In Tu AT (ed.), Handbook of Natural Toxins, Vol. 3. Marcel Dekker, New York: 121–147.Google Scholar
  6. Carmichael WW, He J-W, Eschedor J, He Z-R, Juan Y-M (1988) Partial structural determination of hepatotoxic peptides fromMicrocystis aeruginosa (cyanobacterium) collected in ponds of central China. Toxicon 26: 1213–1217.Google Scholar
  7. Choi BW (1992) Studies on secondary metabolites produced by actinomycetes and cyanobacteria. Ph.D. Thesis, University of Illinois, Urbana.Google Scholar
  8. Choi BW, Namikoshi M, Sun F, Rinehart KL, Carmichael WW, Kaup AM, Evans WR, Beasley VR (1993) Isolation of linear peptides related to the hepatotoxins nodularin and microcystins. Tetrahedron Lett. 34: 7881–7884.Google Scholar
  9. Chu FS, Huang X, Wei RD, Carmichael WW (1989) Production and characterization of antibodies against microcystins. Appl. Environ. Microbiol. 55: 1928–1933.Google Scholar
  10. deSilva ED, Williams DE, Andersen RJ, Klix H, Holmes CFB, Allen TM (1992) Motuporin, a potent protein phosphatase inhibitor isolated from the Papua New Guinea spongeTheonella swinhoei Gray. Tetrahedron Lett. 33: 1561–1564.Google Scholar
  11. DeVries SE, Namikoshi M, Galey FD, Merritt JE, Rinehart KL, Beasley VR (1993) Chemical study of the hepatotoxins fromMicrocystis aeruginosa collected in California. J. vet. Diagn. Invest. 5: 409–412.Google Scholar
  12. Elleman TC, Falconer IR, Jackson ARB, Runnegar MT (1978) Isolation, characterization and pathology of the toxin from aMicrocystis aeruginosa (=Anacystis cyanea) bloom. Aust. J. biol. Sci. 31: 209–218.Google Scholar
  13. Eriksson JE, Meriluoto JAO, Kujari HP, Österlund K, Fagerlund K, Hällbom L (1988) Preliminary characterization of a toxin isolated from the cyanobacteriumNodularia spumigena. Toxicon 26: 161–166.Google Scholar
  14. Fujiki H, Matsushima R, Yoshizawa S, Suganuma M, Nishiwaki S, Ishikawa T, Carmichael WW (1991) Liver tumor promotion through the okadaic acid pathway, inhibition of protein phosphatases 1 and 2A. Proc. Am. Assoc. Cancer Res. 32: 157.Google Scholar
  15. Gathercole PS, Thiel PG (1987) Liquid chromatographic determination of the cyanoginosins, toxins produced by the cyanobacteriumMicrocystis aeruginosa. J. Chromatogr. 408: 435–440.Google Scholar
  16. Harada K-I, Matsuura K, Suzuki M, Watanabe MF, Oishi S, Dahlem AM, Beasley VR, Carmichael WW (1990a) Isolation and characterization of the minor components associated with microcystins LR and RR in the cyanobacterium (blue-green algae). Toxicon 28: 55–64.Google Scholar
  17. Harada K-I, Ogawa K, Matsuura K, Murata H, Suzuki M, Watanabe MF, Itezono Y, Nakayama N (1990b) Structure determination of geometrical isomers of microcystins LR and RR from cyanobacteria by two-dimensional NMR spectroscopic techniques. Chem. Res. Toxicol. 3: 473–481.Google Scholar
  18. Harada K-I, Ogawa K, Kimura Y, Murata H, Suzuki M, Thorn PM, Evans WR, Carmichael WW (1991a) Microcystins fromAnabaena flos-aquae NRC 525-17. Chem. Res. Toxicol. 4: 534–540.Google Scholar
  19. Harada K-I, Ogawa K, Matsuura K, Nagai H, Murata H, Suzuki M, Itezono Y, Nakayama N, Shirai M, Nakano M (1991b) Isolation of two toxic heptapeptide microcystins from an axenic strain ofMicrocystis aeruginosa, K-139. Toxicon 29: 479–489.Google Scholar
  20. Honkanen RE, Zwiller J, Moore RE, Daily SL, Khatra BS, Dukelow M, Boynton AL (1990) Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J. biol. Chem. 265: 19401–19404.Google Scholar
  21. Hooser SB, Beasley VR, Lovell RA, Carmichael WW, Haschek WM (1989) Toxicity of microcystin-LR, a cyclic heptapeptide hepatotoxin fromMicrocystis aeruginosa, to rats and mice. Vet. Pathol. 26: 246–252.Google Scholar
  22. Kiviranta J, Namikoshi M, Sivonen K, Evans WR, Carmichael WW, Rinehart KL (1992) Structure determination and toxicity of a new microcystin fromMicrocystis aeruginosa strain 205. Toxicon 30: 1093–1098.Google Scholar
  23. Krishnamurthy T, Carmichael WW, Sarver EW (1986) Toxic peptides from freshwater cyanobacteria (blue-green algae). I. Isolation, purification and characterization of peptides fromMicrocystis aeruginosa andAnabaena flosaquae. Toxicon 24: 865–873.Google Scholar
  24. Krishnamurthy T, Szafraniec L, Hunt DF, Shabanowitz J, Yates III JR, Hauer CR, Carmichael WW, Skulberg O, Codd GA, Missler S (1989) Structural characterization of toxic cyclic peptides from blue-green algae by tandem mass spectrometry. Proc. natl. Acad. Sci. USA 86: 770–774.Google Scholar
  25. Kusumi T, Ooi T, Watanabe MM, Takahashi H, Kakisawa H (1987) Cyanoviridin RR, a toxin from the cyanobacterium (blue-green alga)Microcystis viridis. Tetrahedron Lett. 28: 4695–4698.Google Scholar
  26. Luukkainen R, Namikoshi M, Sivonen K, Rinehart KL, Niemelä SI (1993a) Isolation and identification of 12 microcystins from four strains and two bloom samples ofMicrocystis spp.: structure of a new hepatotoxin. Toxicon 31.Google Scholar
  27. Luukkainen R, Sivonen K, Namikoshi M, Färdig M, Rinehart KL, Niemelä SI (1993b) Isolation and identification of eight microcystins from thirteenOscillatoria agardhii strains and structure of a new microcystin. Appl. envir. Microbiol. 59: 2204–2209.Google Scholar
  28. MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264: 187–192.Google Scholar
  29. Matsushima R, Yoshizawa S, Watanabe MF, Harada K-I, Furusawa M, Carmichael WW, Fujiki H (1990)In vitro andin vivo effects of protein phosphatase inhibitors, microcystins and nodularin, on mouse skin and fibroblasts. Biochem. Biophys. Res. Commun. 171: 867–874.Google Scholar
  30. Meriluoto JAO, Sandström A, Eriksson JE, Remaud G, Grey Craig A, Chattopadhyaya J (1989) Structure and toxicity of a peptide hepatotoxin from the cyanobacteriumOscillatoria agardhii. Toxicon 27: 1021–1034.Google Scholar
  31. Namikoshi M, Choi BW Sakai R, Sun F, Rinehart KL, Carmichael WW, Evans WR, Cruz P, Munro MHG, Blunt JW (1994a) New nodularins: a general method for structure assignment. J. am. chem. Soc. 116.Google Scholar
  32. Namikoshi M, Choi BW, Sun F, Rinehart KL, Carmichael WW, Evans WR, Beasley VR (1994b) Seven more microcystins from Homer Lake cells: application of the general method for structure assignment of peptides containing α,β-dehydroamino acid unit(s). J. org. Chem. 59.Google Scholar
  33. Namikoshi M, Choi BW, Sun F, Rinehart KL, Evans WR, Carmichael WW (1993) Chemical characterization and toxicity of dihydro derivatives of nodularin and microcystin-LR, potent cyanobacterial cyclic peptide hepatotoxins. Chem. Res. Toxicol. 6: 151–158.Google Scholar
  34. Namikoshi M, Rinehart KL, Dahlem AM, Beasley VR, Carmichael WW (1989) Total synthesis of Adda, the unique C20 amino acid of cyanobacterial hepatotoxins. Tetrahedron Lett. 30: 4349–4352.Google Scholar
  35. Namikoshi M, Rinehart KL, Sakai R, Sivonen K, Carmichael WW (1990) Structures of three new cyclic heptapeptide hepatotoxins produced by the cyanobacterium (blue-green alga)Nostoc sp. strain 152. J. org. Chem. 55: 6135–6139.Google Scholar
  36. Namikoshi M, Rinehart KL, Sakai R, Stotts RR, Dahlem AM, Beasley VR, Carmichael WW, Evans WR (1992a) Identification of 12 hepatotoxins from a Homer Lake bloom of the cyanobacteriaMicrocystis aeruginosa, Microcystis viridis, andMicrocystis wesenbergii: nine new microcystins. J. org. Chem. 57: 866–872.Google Scholar
  37. Namikoshi M, Silvonen K, Evans WR, Carmichael WW, Rouhiainen L, Luukkainen R, Rinehart KL (1992b) Structures of three new homotyrosine-containing microcystins and a new homophenylalanine variant fromAnabaena sp. strain 66. Chem. Res. Toxicol. 5: 661–666.Google Scholar
  38. Namikoshi M, Sivonen K, Evans WR, Carmichael WW, Sun F, Rouhiainen L, Luukkainen R, Rinehart KL (1992c) Two newL-serine variants of microcystins-LR and -RR fromAnabaena sp. strains 202 A1 and 202 A2. Toxicon 30: 1457–1464.Google Scholar
  39. Namikoshi M, Sivonen K, Evans WR, Sun F, Carmichael WW, Rinehart KL (1992d) Isolation and structures of microcystins from a cyanobacterial water bloom (Finland). Toxicon 30: 1473–1479.Google Scholar
  40. Nishiwaki S, Fujiki H, Suganuma M, Furuya-Suguri H, Matsushima R, Iida Y, Ojika M, Yamada K, Uemura D, Yasumoto T, Schmitz FJ, Sugimura T (1990) Structure-activity relationship within a series of okadaic acid derivatives. Carcinogenesis 11: 1837–1841.Google Scholar
  41. Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T Carmichael WW, Fujiki H (1992) Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J. Cancer Res. clin. Oncol. 118: 420–424.Google Scholar
  42. Painuly P, Perez R, Fukai T, Shimizu Y (1988) The structure of a cyclic peptide toxin, cyanogenosin-RR fromMicrocystis aeruginosa. Tetrahedron Lett. 29: 11–14.Google Scholar
  43. Pearce CJ, Rinehart Jr KL (1979) Berninamycin biosynthesis. I. Origin of the dehydroalanine residues. J. am. chem. Soc. 101: 5069–5070.Google Scholar
  44. Quinn RJ, Taylor C, Suganuma M, Fujiki H (1993) The conserved acid binding domain model of inhibitors of protein phosphatases 1 and 2A: molecular modelling aspects. Bioorg. med. chem. Lett. 3: 1029–1034.Google Scholar
  45. Rinehart KL, Harada K, Namikoshi M, Chen C, Harvis CA, Munro MHG, Blunt JW, Mulligan PE, Beasley VR, Dahlem AM, Carmichael WW (1988) Nodularin, microcystin, and the configuration of Adda. J. am. chem. Soc. 110: 8557–8558.Google Scholar
  46. Robinson NA, Pace JG, Matson CF, Miura GA, Lawrence WB (1991) Tissue distribution, excretion and hepatic biotransformation of microcystin-LR in mice. J. pharmacol. exp. Ther. 256: 176–182.Google Scholar
  47. Shirai M, Ohtake A, Sano T, Matsumoto S, Sakamoto T, Sato A, Aida T, Harada K-I, Shimada T, Suzuki M, Nakano M (1991) Toxicity and toxins of natural blooms and isolated strains ofMicrocystis spp. (cyanobacteria) and improved procedure for purification of cultures. Appl. envir. Microbiol. 57: 1241–1245.Google Scholar
  48. Sivonen K, Carmichael WW, Namikoshi M, Rinehart KL, Dahlem AM, Niemelä SI (1990) Isolation and characterization of hepatotoxic microcystin homologs from the filamentous freshwater cyanobacteriumNostoc sp. strain 152. Appl. envir. Microbiol. 56: 2650–2657.Google Scholar
  49. Sivonen K, Namikoshi M, Evans WR, Carmichael WW, Sun F, Rouhiainen L, Luukkainen R, Rinehart KL (1992a) Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genusAnabaena. Appl. envir. Microbiol. 58: 2495–2500.Google Scholar
  50. Sivonen K, Namikoshi M, Evans WR, Färdig M, Carmichael WW, Rinehart KL (1992b) Three new microcystins, cyclic heptapeptide hepatotoxins, fromNostoc sp. strain 152. Chem. Res. Toxicol. 5: 464–469.Google Scholar
  51. Sivonen K, Namikoshi M, Evans WR, Gromov BV, Carmichael WW, Rinehart KL (1992c) Isolation and structures of five microcystins from a RussianMicrocystis aeruginosa strain CALU 972. Toxicon 30: 1481–1485.Google Scholar
  52. Sivonen K, Skulberg OM, Namikoshi M, Evans WR, Carmichael WW, Rinehart KL (1992d) Two methyl ester derivatives of microcystins, cyclic heptapeptide hepatotoxins, isolated fromAnabaena flos-aquae strain CYA 83/1. Toxicon 30: 1465–1471.Google Scholar
  53. Stoner RD, Adams WH, Slatkin DN, Siegelman HW (1989) The effects of single L-amino acid substitutions on the lethal potencies of the microcystins. Toxicon 27: 825–828.Google Scholar
  54. Vasconcelos VM, Evans WLR, Carmichael WW, Namikoshi M (1993) Isolation of mycrocystin-LR from aMicrocystis (cyanobacteria) waterbloom collected in the drinking water reservoir for Porto, Portugal. J. environ. Sci. Health A28: 2081–2094.Google Scholar
  55. Watanabe MF, Oishi S, Harada K-I, Matsuura K, Kawai H, Suzuki M (1988) Toxins contained inMicrocystis species of cyanobacteria (blue-green algae). Toxicon 26: 1017–1025.Google Scholar
  56. Yoshizawa S, Matsushima R, Watanabe MF, Harada K-I, Ichihara A, Carmichael WW, Fujiki H (1990) Inhibition of protein phosphatases by microcystis and nodularin associated with hepatotoxicity. J. Cancer Res. clin. Oncol. 116: 609–614.Google Scholar
  57. Zhang Q-X, Carmichael WW, Yu M-J, Li S-H (1991) Cyclic peptide hepatotoxins from freshwater cyanobacterial (blue-green algae) waterblooms collected in central China. Environ. Toxicol. Chem. 10: 313–321.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Kenneth L. Rinehart
    • 1
  • Michio Namikoshi
    • 1
  • Byoung W. Choi
    • 1
  1. 1.Roger Adams LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations