Journal of Applied Phycology

, Volume 6, Issue 1, pp 45–60

Use of macroalgae for marine biomass production and CO2 remediation: a review

  • Kunshan Gao
  • Kelton R. McKinley


Biomass production from macroalgae has been viewed as important mainly because of the need for pollution abatement. Environmental considerations will increasingly determine product and process acceptability and drive the next generation of economic opportunity. Some countries, including Japan, are actively promoting "green" technologies that will be in demand worldwide in the coming decades. Should an international agreement on CO2-reduction be ratified, its effective use for energy production would be of high priority. This report shows that macroalgae have great potential for biomass production and CO2 bioremediation. Macroalgae have high productivity, as great or greater than the most productive land plants, and do not compete with terrestrial crops for farm land. The review focuses on recent data on productivity, photosynthesis, nutrient dynamics, optimization and economics. Biomass from macroalgae promises to provide environmentally and economically feasible alternatives to fossil fuels. Nevertheless, the techniques and technologies for growing macroalgae on a large-scale and for converting feedstocks to energy carriers must be more fully developed.

Key words

biofilter biofuels CO2 macroalgae marine biomass photosynthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alih EM (1990) Economics of seaweed (Eucheuma farming in Tawi-Tawi islands in the Philippines. The Second Asian Fisheries Forum, Proceedings of the Second Asian Fisheries Forum, Tokyo, Japan, 17–22 April 1989: 249–252.Google Scholar
  2. Atkinson MJ, Smith SV (1983) C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 28: 568–574.Google Scholar
  3. Beer S, Israel A, Drechsler Z, Cohen Y (1990) Photosynthesis ofUlva fasciata V. Evidence for an inorganic carbon concentrating system, and ribulose-1,5-bisphosphate carboxylase/oxygenase CO2 kinetics. Plant Physiol. 94: 1542–1546.Google Scholar
  4. Bidwell RGS, McLachlan J, Lloyd NDH (1985) The cultivation of Irish moss,Chondrus crispus Stackh. Bot. Mar. 28: 87–97.Google Scholar
  5. Bidwell RGS, McLachlan J (1985) Carbon nutrition of seaweeds: photosynthesis, photorespiration and respiration. J. exp. mar. Biol. Ecol. 86: 15–46.Google Scholar
  6. Birch PB, Gordon DM, McComb AJ (1981) Nitrogen and phosphorus nutrition ofCladophora in the Peel-Harven system. Bot. Mar. 24: 381–387.Google Scholar
  7. Bird KT (1987) Cost analysis of energy from marine biomass. In Bird KT, Benson PH (eds), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam: 327–350.Google Scholar
  8. Bird KT, Hanisak MD, Ryther JH (1981) Chemical quality and production of agars extracted fromGracilaria tikvahiae grown in different nitrogen enrichment conditions. Bot. Mar. 24: 441–444.Google Scholar
  9. Borowitzka MA (1981) Photosynthesis and calcification in the articulate coralline algaeAmphiroa anceps andA. foliacea. Mar. Biol. 62: 17–23.Google Scholar
  10. Borowitzka MA, Larkum AWD (1976) Calcification in the green algaHalimeda III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. J. exp. Bot. 27: 879–893.Google Scholar
  11. Brinkhuis BH, Levine HG, Schlenk GG, Tobin S (1987)Laminaria cultivation in the far east and North America. In Bird KT, Benson PH (eds), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam: 107–146.Google Scholar
  12. Brown DL, Tregunna EB (1967) Inhibition of respiration during photosynthesis by some algae. Can. J. Bot. 45: 1135–1143.Google Scholar
  13. Broecker WS (1982) Ocean chemistry during glacial times. Geochimica et Geophysica Acta 46: 1689–1705.Google Scholar
  14. Broecker WS, Denton GH (1989) The rose of ocean-atmosphere reorganization in glacial cycles. Geochimica et Geophysica Acta 53: 2645–2510.Google Scholar
  15. Calvin M, Taylor SE (1989) Fuels from algae. In Cresswell RC, Ress TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman and John Wiley & Sons, New York: 137–160.Google Scholar
  16. Carpenter RC, Hackney JM, Adey WH (1991) Measurements of primary productivity and nitrogenase activity of coral reef algae in a chamber incorporating oscillatory flow. Limnol. Oceanogr. 36: 40–49.Google Scholar
  17. Chapman ARO, Craigie JS (1977) Seasonal growth inLaminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40: 197–205.Google Scholar
  18. Chynoweth DP, Fannin KF, Srivastava VJ (1987) Biological gasification of marine algae. In Bird KT, Benson PH (eds), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam: 285–303.Google Scholar
  19. Cohen I, Neori A (1991)Ulva lactuca biofilters for marine fishpond effluents I. Ammonia uptake kinetics and nitrogen content. Bot. Mar. 34: 475–482.Google Scholar
  20. Cook CM, Lanaras T, Colman B (1986) Evidence for bicarbonate transport in species of red and brown macrophytic marine algae. J. exp. Bot. 37: 977–984.Google Scholar
  21. Cousens R (1984) Estimation of annual production by the intertidal brown algaAscophyllum nodosum (L.) Le Jolis. Bot. Mar. 27: 217–227.Google Scholar
  22. Critchley AT, DeVisscher PRM, Nienhuis PH (1990) Canopy characteristics of the brown algaSargassum muticum Fucales, Phaeophyta) In Lake Grevelingen, southwest Netherlands. Hydrobiologia 204/205: Dev. Hydrobiol. 58: 211–217.Google Scholar
  23. Debusk TA, Ryther JH (1984) Effects of seawater exchange, pH and carbon supply on the growth ofGracilaria tikvahiae (Rhodophyceae) in large scale culture. Bot. Mar. 27: 357–362.Google Scholar
  24. DeBoer JA, Guigli HJ, Israel TL, D'Elia CF (1978) Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. J Phycol. 14: 261–266.Google Scholar
  25. Doty MS (1987) The production and use ofEucheuma. In Doty MS, Caddy JF, Santelices B (eds), Case Studies of Seven Commercial Seaweed Resources. FAO Fish. Tech. Pap. No. 281: 123–164.Google Scholar
  26. Drechsler Z, Beer S (1991) Utilization of inorganic carbon byUlva lactuca. Planta Physiol. 97: 1439–1444.Google Scholar
  27. Dring MJ (1986) Pigment composition and photosynthetic action spectra ofLaminaria (Phaeophyta) grown in different light qualities and irradiances. Br. phycol. J. 21: 199–207.Google Scholar
  28. Dromgoole FI (1978) The effects of pH and inorganic carbon on photosynthesis and dark respiration ofCarpophyllum (Fucales, Phaephyceae). Aquat. Bot. 4: 11–22.Google Scholar
  29. Egan B, Yarish C (1990) Productivity and life history ofLaminaria longicruris at its southern limit in the western Atlantic Ocean. Mar. Ecol. Prog. Ser. 67: 263–273.Google Scholar
  30. FAO (1990) Training manual onGracilaria Culture and Seawood Processing in China. Training Manual 6: 2–46.Google Scholar
  31. Fernandez C, Gutierrez LM, Rico JM (1990) Ecology ofSargassum muticum on the north coast of Spain. Preliminary observations. Bot. Mar. 33: 423–428.Google Scholar
  32. Friedlander M, Dawes CJ (1985)In situ uptake kinetics of ammonium and phosphate and chemical composition of the red seaweedGracilaria tikvahiae. J. Phycol. 21: 448–453.Google Scholar
  33. Fujita RM (1985) The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. J. exp. mar. Biol. Ecol. 92: 283–301.Google Scholar
  34. Gao K (1990a) Seasonal variation of photosynthetic capacity inSargassum horneri. Jpn. J. Phycol. 38: 25–33.Google Scholar
  35. Gao K (1990b) Diurnal photosynthetic performance ofSargassum horneri. Jpn. J. Phycol. 38: 163–165. (Japanese, with English summary).Google Scholar
  36. Gao K (1991a) Effects of seawater current speed on the photosynthetic oxygen evolution ofSargassum thunbergii (Phaeophyta). Jpn. J. Phycol. 39: 291–293. (Japanese, with English summary).Google Scholar
  37. Gao K (1991b) Comparative photosynthetic capacities of different parts ofSargassum horneri. Jpn. J. Phycol. 39: 245–252.Google Scholar
  38. Gao K, Aruga Y (1987) Preliminary studies on the photosynthesis and respiration ofPorphyra yezoensis under emersed conditions. J. Tokyo Univ. Fish. 74: 51–65.Google Scholar
  39. Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO2 concentrations. J. appl. Phycol. 3: 355–362.Google Scholar
  40. Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1992) Enhancement of photosynthetic CO2 fixation of the red algaPorphyra yezoensis Ueda in flowing seawater. Jpn. J. Phycol. 40: 397–400. (Japanese, with English summary).Google Scholar
  41. Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993) Calcification in the articulated coralline algaCorallina pilulifera, with special reference to the effect of elevated atmospheric CO2. Mar. Biol. 117: 129–132.Google Scholar
  42. Gao K, Aruga Y, Asada K, Kiyohara M (1993) Influence of enhanced CO2 on growth and photosynthesis of the red algaeGracilaria sp. andG. chilensis. J. appl. Phycol. 5: 563–571.Google Scholar
  43. Gao K, Nakahara H (1990) Effects of nutrients on the photosynthesis ofSargassum thunbergii. Bot. Mar. 33: 375–383.Google Scholar
  44. Gao K, Umezaki I (1989a) Comparative studies of photosynthesis in different parts ofSargassum thunbergii. Jpn. J. Phycol. 37: 7–16.Google Scholar
  45. Gao K, Umezaki I (1989b) Studies on diurnal photosynthetic performance ofSargassum thunbergii I. Changes in photosynthesis under natural sunlight. Jpn. J. Phycol. 37: 89–98.Google Scholar
  46. Gao K, Umezaki I (1989c) Studies on diurnal photosynthetic performance ofSargassum thunbergii II. Explanation of diurnal photosynthesis patterns from examinations in the laboratory. Jpn. J. Phycol. 37: 99–104.Google Scholar
  47. Gellenbeck K, Chapman D (1986) Feasibility of mariculture of the brown seaweed,Sargassum muticum (Phaeophyta): Growth and culture conditions, culture methods, alginic acid content and conversion to methane. In Barclay WR, McIntosch RP (eds), Algal Biomass Technologies. J. Cramer, Berlin: 107–115.Google Scholar
  48. Gerard VA (1987) Optimizing biomass production on marine farms. In Bird KT, Benson PH (eds), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam: 95–106.Google Scholar
  49. Giordano M, Maberly SC (1989) Distribution of carbonic anhydrase in British marine macroalgae. Oecologia 81: 534–539.Google Scholar
  50. Graham D, Smillie RM (1976) Carbonate dehydrase in marine organisms of the Great Barrier Reef. Aust. J. Plant Physiol. 3: 113–119.Google Scholar
  51. Haines KC, Wheeler PA (1978) Ammonium and nitrate uptake by the marine macrophytesHypnea musciformis (Rhodophyta) andMacrocystis pyrifera (Phaeophyta). J. Phycol. 14: 319–324.Google Scholar
  52. Hall DO, Mynick HE, Williams RH (1991) Cooling the green house with bioenergy. Nature 353: 11–12.Google Scholar
  53. Hanisak MD (1979) Nitrogen limitation ofCodium fragile ssp.tomentosoides as determined by tissue analysis. Mar. Biol. 50: 333–337.Google Scholar
  54. Hanisak MD (1981) Recycling the residues from anaerobic digesters as a nutrient source for seaweed growth. Bot. Mar. 24: 57–61.Google Scholar
  55. Hanisak MD, Harlin MM (1978) Uptake of inorganic nitrogen byCodium fragile subsp.tomentosoides (Chlorophyta). J. Phycol. 14: 450–454.Google Scholar
  56. Hanisak MD, Littler MM, Littler DS (1988) Significance of macroalgal polymorphism: intraspecific tests of the functional-form model. Mar. Biol. 99: 157–165.Google Scholar
  57. Hanisak MD, Ryther JH (1984) Cultivation biology ofGracilaria tikvahiae in the United States. Hydrobiologia 116/117 (Dev. Hydrobiol. 22): 295–298.Google Scholar
  58. Harlin MM (1978) Nitrate uptake byEnteromorpha spp (Chlorophyceae): applications to aquaculture systems. Aquaculture: 15: 373–376.Google Scholar
  59. Harlin MM, Craigie JS (1978) Nitrate uptake byLaminaria longicruris (Phaeophyceae). J. Phycol. 14: 464–467.Google Scholar
  60. Helm D (1990) Who should pay for global warming. New Scientist 3: 36–39.Google Scholar
  61. Henley WJ, Levavasseur G, Franklon LA, Osmond CB, Ramus J (1991) Photoacclimation and photoinhibition inUlva rotundata as influenced by nitrogen availability. Planta 184: 235–243.Google Scholar
  62. Herbert SK, Waaland JR (1988) Photoinhibition of photosynthesis in a sun and a shade species of the red algal genusPorphyra. Mar. Biol. 97: 1–7.Google Scholar
  63. Hirata H, Xu B (1990) Effects of feed addictiveUlva produced in feedback culture system on the growth and color of Red Sea Bream, Pagure major. SUISANZOSHOKU 38: 177–182. (Japanese, with English summary).Google Scholar
  64. Holbrook GP, Beer S, Spencer WE, Reiskind JB, Davis JS, Bowes G (1988) Photosynthesis in marine macroalgae: Evidence for carbon limitation. Can. J. Bot. 66: 577–582.Google Scholar
  65. Imada O, Usuku T, Saito Y, Ando S (1987) Artificial culture of laver thalli applied to large scale system. Bull. Jap. Soc. Sci. Fish. 53: 739–765. (Japanese, with English summary).Google Scholar
  66. Intergovernmental Panel on Climate Change (IPCC) (1990) Climate Change: The IPCC Scientific Assessment. Houghton JT, Jenkins GJ, Ephraumus (eds), Cambridge University Press, New York.Google Scholar
  67. Israel A, Beer S (1992) Photosynthetic carbon acquistion in the red algaGracilaria conferta. II. Rubisco carboxylase kinetics, carbonic anhydrase and HCO- 3 uptake. Mar. Biol. 112: 200–697.Google Scholar
  68. Johnston AM, Raven JA (1986) The utilization of bicarbonate ions by the macroalgaAscophyllum nodosum (L.) Le Jolis. Plant Cell Envir. 9: 175–184.Google Scholar
  69. Johnston AM, Raven JA (1990) Effects of culture in high CO2 on the photosynthetic physiology ofFucus serratus. Br. phycol. J. 25: 75–82.Google Scholar
  70. Kilar JA, Littler SL (1989) Functional morphological relationship inSargassum polyceratium (Phaeophyta): Phenotypic and ontogenetic variability in apparent photosynthesis and dark respiration. J. Phycol. 25: 713–720.Google Scholar
  71. Kita W (1990) Culture of seaweedsMonostroma. Mar. Behav. Physiol. 16: 109–131.Google Scholar
  72. Küppers U, Kremer BP (1978) Longitudinal profiles of carbon dioxide fixation capacities in marine macroalgae. Plant Physiol. 62: 49–53.Google Scholar
  73. Lapointe BE (1986) Phosphorus-limited photosynthesis and growth ofSargassum natans andSargassum fluitans (Phaeophyceae) in the western North Atlantic. Deep Sea Res. 33: 391–399.Google Scholar
  74. Larkum AWD (1986) A study of growth and primary production inEcklonia radiata (C.Ag.) J. Agardh (Laminariales) at a sheltered site in Port Jackson, New South Wales. J. exp. mar. Biol. Ecol. 96: 177–190.Google Scholar
  75. Lehnberg W, Schramm W (1984) Mass culture of brackishwater-adapted seaweeds in sewage-enriched seawater. I. Productivity and nutrient accumulation. Hydrobiologia 116/117 (Dev. Hydrobiol. 22): 276–281.Google Scholar
  76. Levavasseur G, Edwards GE, Osmond CB, Ramus J (1991) Inorganic carbon limitation of photosynthesis inUlva rotundata (Chlorophyta). J. Phycol. 27: 667–672.Google Scholar
  77. Lignell A. Pedersen M (1989) Effects of pH and inorganic carbon concentration on growth ofGracilaria secundata. Br. phycol. J. 24: 83–89.Google Scholar
  78. Madsen TV, Maberly SC (1990) A comparison of air and water as environments for photosynthesis by the intertidal algaFucus spiralis (Phaeophyta). J. Phycol. 26: 24–30.Google Scholar
  79. Maegawa M (1980) Measurements of photosynthesis and productivity of the cultivatedMonostroma population. La Mer 18: 116–124.Google Scholar
  80. Maegawa M, Aruga Y (1983) Photosynthesis and productivity of the cultivatedMonostroma latissimum population. La Mer 21: 164–172.Google Scholar
  81. Mann KH (1972) Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. 2. Productivity of the seaweeds. Mar. Biol. 12: 1–10.Google Scholar
  82. Matsumoto F. (1959) Studies on the effect of environmental factors on the growth of ‘Nori’ (Porphyra tenera Kjellm.), with special reference to water motion. J. Fac. Fish. Anim. Hush. Hiroshima Univ. 2: 249–333 (Japanese, with English summary).Google Scholar
  83. McKinley KR, Fast AW (1991) Increasing productivity by the utilization of deep ocean water: biological considerations and the U.S. experience. In Hirata GN, McKinley KR, Fast AW (eds), Engineering Research Needs for OffShore Mariculture Systems Workshop. National Science Foundation, East-West Center, Hawaii Natural Energy Institute, Honolulu: 411–421.Google Scholar
  84. Mencher FM, Katase SA (1988) Growth of Nod (Porphyra yezoensis) in an experimental ocean thermal energy convesion system at The Natural Energy Laboratory of Hawaii. In Fast AW, Tanoue KY (eds), OTEC Aquaculture in Hawaii. UNIHI-SEAGRANT -MR-89-01, UH Sea Grant College Program, Honolulu, Hawaii: 76–83.Google Scholar
  85. Morand P, Carpentier B, Charlier RH, Maze J, Orlandini M, Plunkett BA, Waart JD (1991) Bioconversion of seaweeds. In Guiry MD, Blunden G (eds), Seaweed Resources in Europe: Uses and Potential. John Wiley & Sons, Chichester: 95–148.Google Scholar
  86. Morgan KC, Shacklock PF, Simpson FJ (1980) Some aspects of the culture ofPalmaria palmata in greenhouse tanks. Bot. Mar. 23: 765–770.Google Scholar
  87. Nathan RA (ed.) (1978) Fuels from Sugar Crops. U.S. Department of Energy.Google Scholar
  88. North WJ (1987) Oceanic farming of Macrocystis, the problems and non-problems. In Bird KT, Benson PH (eds), Seaweek Cultivation for Renewable Resources. Elsevier, Amsterdam: 39–67.Google Scholar
  89. Novaczek (1984) Development and phenology ofEcklonia radiata at two depths in Goat Island Bay, New Zealand. Mar. Biol. 81: 189–197.Google Scholar
  90. Okazaki M (1972) Carbonic anhydrase in the calcareous red algaSerraticardia maxima. Bot. Mar. 15: 133–138.Google Scholar
  91. Orr JC, Sarmiento JL (1992) Potential of marine macroalgae as a sink for CO2: Constraint from a 3-d general circulation model of the global ocean. Water, Air and Soil Pollution 64: 405–421.Google Scholar
  92. Quay PK, Tilbrook B, Wong CS (1992) Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science 256: 74–79.Google Scholar
  93. Raven JA (1992a) How benthic macroalgae cope with flowing freshwater: resource acquisition and retention. J. Phycol. 28: 133–146.Google Scholar
  94. Raven JA (1992b) Limits on growth rates. Nature 361: 209–210.Google Scholar
  95. Raven JA, Osmond CB (1990) Bicarbonate use in photosynthesis by brown algae andCodium fragile from North Carolina. Br. phycol. J. 25: 94.Google Scholar
  96. Riebesel U, Wolf-Gladrow DA, Smetacek V (1992) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361: 249–251.Google Scholar
  97. Ritschard RL (1992) Marine algae as a CO2 sink. Water, Air and Soil Pollution 64: 289–303.Google Scholar
  98. Roman CT, Able KW, Lazzari MA, Heck KL (1990) Primary productivity of angiosperm and macroalgae dominated habitats in a New England salt marsh: A comparative analysis. Estuar. coast. shelf Sci. 30: 35–45.Google Scholar
  99. Rosenberg G, Ramus J (1984) Uptake of inorganic nitrogen and seaweed surface area: volume ratios. Aquat. Bot. 19: 65–72.Google Scholar
  100. Ryther JH, DeBoer JA, Lapointe BE (1979) Cultivation of seaweeds for hydrocolloids, waste treatment and biomass for energy conversion. Proc. Int. Seaweed Symp. 9: 1–16.Google Scholar
  101. Ryther JH Dunstan WM, Tenore KR, Huguenin JE (1972) Controlled eutrophication: increasing food production from the sea by recycling human wastes. AIBS J. 22: 144–152.Google Scholar
  102. Sakanishi Y, Yokohama Y, Aruga Y (1990) Seasonal changes in photosynthetic capacity ofLaminaria longissima Miyabe (Phaeophyta). Jpn. J. Phycol. 38: 147–153.Google Scholar
  103. Sand-Jensen K, Gordon DM (1984) Differential ability of marine and freshwater macrophytes to utilize HCO- 3 and CO2. Mar. Biol. 80: 247–253.Google Scholar
  104. Sauze F (1983) Increasing the productivity of macroalgae by the action of a variety of factors. In Stub A, Chartier A, Schleser P, Schleser G (eds), Energy from Biomass. Elsevier Applied Science, London: 324–328.Google Scholar
  105. Schramm W (1991) Seaweeds for waste water treatment and recycling of nutrients. In Guiry MD, Blunden G (eds), Seaweed Resources in Europe: Uses and Potential. John Wiley & Sons, Chichester: 149–168.Google Scholar
  106. Smith AD, Roth AA (1979) Effect of carbon dioxide concentration on calculation in the red coralline algaBossiella orbigniana. Mar. Biol. 52: 217–225.Google Scholar
  107. Smith JR (1987) The economics of small-scale seaweed production in the South China Sea region. FAO Fish. Circ. No 806.Google Scholar
  108. Smith RG, Bidwell RGS (1987) Carbonic anhydrase-dependent inroganic carbon uptake by the red macroalga,Chondrus crispus. Plant Physiol. 83: 735–738.Google Scholar
  109. Smith SV, Walsh TW (1988) Surface and deep water composition at the Natural Energy Laboratory of Hawaii. In Fast AW, Tanoue KW (eds), OTEC Aquaculture in Hawaii. UNIHI-SEAGRANT -MR-89-01, UH Sea Grant College Progam, Honolulu: 49–69.Google Scholar
  110. Snow IT Jr, Piper LE, Lupton SE, Stegen GR (1979) Comparative assessment of marine biomass materials. Electric Power Research Institute, Palo Alto, CA.Google Scholar
  111. Stumm W, Morgan JJ (1981) Aquatic Chemistry. Wiley, New York: 171–185.Google Scholar
  112. Sullivan RJ, McGinn J, Jain K, Engel M (1981) Systems analysis studies on marine biomass commercial application. General Electric Co. Re-Entry Systems Divisions, Philadelphia.Google Scholar
  113. Surif MB, Raven JA (1989) Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78: 97–105.Google Scholar
  114. Taniguichi K, Yamada H (1988) Annual variation and productivity of theSargassum horneri population in Matsushima Bay on the Pacific coast of Japan. Bull. Tohokureg. Fish. Res. Lab. 50: 59–65. (Japanese, with English summary).Google Scholar
  115. Thomas EA, Tregunna EB (1968) Bicarbonate ion assimilation in photosynthesis bySargassum muticum. Can. J. Bot. 46: 411–415.Google Scholar
  116. Tseng CK, Fei XG (1987) Macroalgal commercialization in the Orient. Hydrobiologia 151/152 (Dev. Hydrobiol. 41): 167–172.Google Scholar
  117. Tseng CK, Sweeney BM (1946) Physiological studies ofGelidium cartilagineum. I. Photosynthesis, with special reference to the carbon dioxide factor. Am. J. Bot. 33: 706–715.Google Scholar
  118. Ugarte R, Santelices B (1992) Experimental tank cultivation ofGracilaria chilensis in central Chile. Aquaculture 101: 7–16.Google Scholar
  119. Wallentinus I (1984) Comparison of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar. Biol. 80: 215–225.Google Scholar
  120. Wheeler PA, North WJ (1980) Effect of nitrogen supply on nitrogen content and growth rate of juvenileMacrocystis pyrifera (Phaeophyta) sporophytes. J. Phycol. 16: 577–582.Google Scholar
  121. Wheeler WN (1980a) Effect of boundary layer transport on the fixation of carbon by the giant kelpMacrocystis pyrifera. Mar. Biol. 56: 103–110.Google Scholar
  122. Wheeler WN (1980b) Pigment content and photosynthetic rate of the fronds ofMacrocystis pyrifera. Mar. Biol. 56: 97–102.Google Scholar
  123. Wheeler WN, Druehl LD (1986) Seasonal growth and productivity ofMacrocystis integrifolia in British Columbia, Canada. Mar. Biol. 90: 181–186.Google Scholar
  124. Wheeler WN, Srivastava LM (1984) Seasonal nitrate physiology ofMacrocystis integrifolia. J. exp. mar. Biol. Ecol. 76: 35–50.Google Scholar
  125. Williamson P (1992) A curb on carbon? AMBIO 21: 387.Google Scholar
  126. Wu CY, Wen ZC, Zhang JP, Peng ZS (1984) A preliminary comparative study of the productivity of three economic seaweeds. Chinese J. Oceanol. Limnol. 2: 97–101.Google Scholar
  127. Yokohama Y (1973) A comparative study on photosynthesis-temperature relationships and their seasonal changes in marine benthic algae. Int. Rev. ges. Hydrobiol. 58: 463–472.Google Scholar
  128. Yokohama Y, Tanaka J, Chihara M (1987) Productivity of theEcklonia cava community in a bay of Izu Peninsula on the Pacific Coast of Japan. Bot. Mag. Tokyo 100: 129–141.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Kunshan Gao
    • 1
  • Kelton R. McKinley
    • 1
  1. 1.School of Ocean and Earth Science and Technology, University of Hawaii at ManoaHawaii Natural Energy InstituteHonoluluUSA

Personalised recommendations