Journal of Applied Phycology

, Volume 6, Issue 1, pp 13–20 | Cite as

Halotolerance studies onChlamydomonas reinhardtii: glycerol excretion by free and immobilized cells

  • R. León
  • F. Galván
Article

Abstract

The freshwater green algaChlamydomonas reinhardtii can tolerate a maximum saline concentration of 200 mM NaCl. In response to this osmotic shock, the cells accumulated during the first 24 h 15% of the total glycerol synthesized as osmoregulatory metabolite, to provide the corresponding osmotic balance. After this period all glycerol synthesized was excreted to the medium, 4 g L-1 at 120 h in optimal conditions, before cell degradation occurred. This excretion was about 2-fold higher in Ca-alginate entrapped cells in the presence of 250 mM NaCl. It was concluded that immobilized cells may be of biotechnological interest for continuous glycerol photoproduction in air-lift bioreactors.

Key words

Alginate Chlamydomonas glycerol halotolerance immobilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnon DI (1949) Copper enzymes in isolated choloroplasts: polyphenol oxidase inBeta vulgaris. Plant Physiol. 24: 1–15.Google Scholar
  2. Bailliez C, Largeau C, Casadevall E (1985) Growth and hydrocarbon production ofBotryococcus braunii immobilized in calcium alginate gel. Appl. Microbiol. Biotechnol. 23: 99–105.Google Scholar
  3. Ben-Amotz A, Avron M (1981) Glycerol and β-carotene metabolism in the halotolerant algaDunaliella: a model system for biosolar energy consersion. Trends Biochem. Sci. 6: 297–299.Google Scholar
  4. Ben-Amotz A, Avron M (1983) Accumulation of metabolites by halotolerant algae and its industrial potential. Ann. Rev. Microbiol. 37: 95–119.Google Scholar
  5. Bispin B, Baumann U, Hellfors H, Rehm HJ (1990) Formation of polyols by immobilized fungi. In de Bont JAM, Visser J, Mattiasson B, Tramper J (eds), Physiology of Immobilized Cells. Elsevier, Amsterdam: 387–392.Google Scholar
  6. Borowitzka MA, Borowitzka LJ (1988)Dunaliella. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge: 27–58.Google Scholar
  7. Brouers M, Hall DO (1986) Ammonia and hydrogen production by immobilized cyanobacteria. J. Biotechnol. 3: 307–321.Google Scholar
  8. Chen BU, Chi CH (1981) Process development and evaluation for algal glycerol production. Biotechnol. Bioengng. 23: 1267–1287.Google Scholar
  9. Chitlary E, Pick U (1991) Regulation of glycerol synthesis in response to osmotic changes inDunaliella. Plant Physiol. 96: 50–60.Google Scholar
  10. Gamboa A, Alfaro S, Reynoso T (1985) Taurine induction of cation tolerance inChlamydomonas reinhardtii. Comp. Biochem. Physiol. 81A: 491–493.Google Scholar
  11. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Ann. Rev. Microbiol. 31: 149–190.Google Scholar
  12. Grizeau D, Navarro JM (1986) Glycerol production byDunaliella tertiolecta immobilized within Ca-alginate beads. Biotechnol. Lett. 8: 261–264.Google Scholar
  13. Hellebust JA (1976) Osmoregulation. Ann. Rev. Plant Physiol. 27: 485–505.Google Scholar
  14. Husic HD, Tolbert NE (1986) Effect of osmotic stress on carbon metabolism inChlamydomonas reinhardtii. Plant Physiol. 82: 594–596.Google Scholar
  15. Marker (1972) The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwater Biol. 2: 361–385.Google Scholar
  16. Merchuk JC (1990) Why use air-lift bioreactors? Trends Biotechnol. 8: 66–71.Google Scholar
  17. Neale PJ, Melis A (1989) Salinity-stress enhances photoinhibition of photosynthesis inChlamydomonas reinhardtii. J. Plant Physiol. 134: 619–622.Google Scholar
  18. Rao KK, Hall DO (1992) Immobilized photosynthetic systems. Applications in Biotechnology. In: Barber J, Guerrero MG, Medrano H (eds), Trend in Photosynthesis Research. Intercept, Andover: 135–147.Google Scholar
  19. Reynoso T, Gamboa A (1982) Salt tolerance in the freshwater algaChlamydomonas reinhardtii: effect of proline and taurine. Comp. Biochem. Physiol. 73A: 95–99.Google Scholar
  20. Santos-Rosa F, Galván F (1989) Ammonium photoproduction by free and immobilized cells ofChlamydomonas reinhardtii. Appl. Microbiol. Biotechnol. 31: 55–58.Google Scholar
  21. Santos-Rosa F, Galván F, Vega JM (1989) Biological viability ofChlamydomonas reinhardtii cells entrapped in alginate beads for ammonium photoproduction. J. Biotechnol. 9: 209–220.Google Scholar
  22. Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol. 8: 71–78.Google Scholar
  23. Sueoka N, Chiang KS, Kates JR (1967) Deoxyribonucleic acid replication in meiosis ofChlamydomonas reinhardtii. Isotopic transfer experiments with a strain producing eight zoospores. J. mol. Biol. 25: 47–66.Google Scholar
  24. Tramper J (1990) Conversions by immobilized cells versus traditional fermentations. In de Bont JAM, Visser J, Mattiasson B, Tramper J (eds), Physiology of Immobilized Cells. Elsevier, Amsterdam: 1–14.Google Scholar
  25. Trevan MD, Mak AL (1988) Immobilized algae and their potential for use as biocatalysts. Trends Biotechnol. 6: 68–72.Google Scholar
  26. Vijalkishore P, Karanth NG (1987) Glycerol production by fermentation a fed-batch approach. Biotechnol. Bioengng: 30: 325–328.Google Scholar
  27. Vilchez C, Galván F, Vega JM (1991) Glycolate photoproduction by free and alginate-entrapped cells ofChlamydomonas reinhardtii. Appl. Microbiol. Biotechnol. 35: 716–719.Google Scholar
  28. Wegmann K, Ben-Amotz A, Avron M (1980) Effect of temperature on glycerol retention in the halotolerant algaeDunaliella andAsteromonas. Plant Physiol. 66, 1196–1197.Google Scholar
  29. Wieland OH (1984) Glycerol: UV-method. In Bergmeyer J, Braβ1 M (eds), Methods of Enzymatic Analysis. Metabolites 1: Carbohydrates (Vol. VI). Verlag-Chemie, Weinheim: 504–510.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • R. León
    • 1
  • F. Galván
    • 1
  1. 1.Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de SevillaSevillaSpain

Personalised recommendations