Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Temperature responses of economically important red algae and their potential for mariculture in Brazilian waters

  • 175 Accesses

  • 24 Citations

Abstract

Data are presented on temperature responses, based onin vitro growth performance, of eight species of colloid-producing red algae; these include the five most important commercial species of agarophytes in South America. The temperature optima do not conform strictly to geographic distribution, and intolerance to high temperature is not the factor that controls the spreading of temperate species ofGracilaria to warmer areas. WithinPterocladia capillacea (Gmelin) Bornet et Thuret, populations from two distinct localities had different responses to temperature optima. Data suggest that the disjunct distribution of this species in the American Atlantic is due to its poor performance at temperatures above 26 °C. The fastest maximum growth rate was observed inHypnea cornuta (Lamouroux) J. Agardh (doubling time 2.8 d), and the slowest inP. capillacea from Cabo Frio (doubling time 50.0 d). All the species studied, including the valuable Chilean and Argentinean species ofGracilaria, could tolerate the temperature regimes of the Brazilian waters.

This is a preview of subscription content, log in to check access.

References

  1. Berchez FAS, Oliveira EC (1990) Growth rate, in vitro, of the agar producing seaweedPterocladia capillacea (Rhodophyta, Gelidiaceae) under different conditions of light, temperature and nutrients. Revta brasil. Bot. 13: 55–59.

  2. Bird NL, Chen LCM, McLachlan J (1979) Effects of temperature, light and salinity on growth in culture ofChondrus crispus, Furcellaria lumbricalis, Gracilaria tikvahiae (Gigartinales, Rhodophyta) andFucus serratus (Fucales, Phaeophyta). Bot. mar. 22: 521–527.

  3. Bolton JJ (1983) Ecoclinal variation inEctocarpus siliculosus (Phaeophyceae) with respect to temperature growth optima and survival limits. Mar. Biol. 73: 131–138.

  4. Bolton JJ, Anderson RJ (1987) Temperature tolerances of two southern AfricanEcklonia species (Alariaceae:Laminariales) and of hybrids between them. Mar. Biol. 96: 293–297.

  5. Brinkhuis BH (1985) Growth patterns and rates. In Littler MM, Littler DS (eds), Handbook of Phycological Methods -Ecological Field Methods: Macroalgae. Cambridge U.P., Cambridge, 461–477.

  6. Causey NJ, Prythetch J, McLaskill HH, Wolf F (1946) Influence of environmental factors upon the growth ofGracilaria confervoides. Bull. Duke Univ. mar. Stn 3: 19–24.

  7. Dawes CJ, Moon R, La Claire J (1976) Photosynthetic responses of the red alga,Hypnea musciformis (Wulfen) Lamouroux (Gigartinales). Bull. mar. Sci. 26: 467–473.

  8. Edelstein T, Bird CJ, McLachlan J (1976) Studies onGracilaria. 2. Growth under greenhouse conditions. Can. J. Bot. 54: 2275–2290.

  9. Egan B, Vlasto A, Yarish C (1989) Seasonal acclimation to temperature and light inLaminaria longicruris de la Pil. (Phaeophyta). J. exp. mar. Biol. Ecol. 129: 1–16.

  10. Fletcher RL (1989) A consideration of some problems associated with the outdoor cultivation of algae. In Kain JM, Andrews JW, McGregor BJ (ed.) Aquatic Primary Biomass — Marine Macroalgae. DG XII/F Biotechnology. Brussels, 5–11.

  11. Fralick RA, Andrade F (1981) The growth, reproduction harvesting and management ofPterocladia pinnata (Rhodophyceae) in the Azores, Portugal. Proc. Int. Seaweed Symp. 10: 289–295.

  12. Friedlander M, Zelikovitch N (1984) Growth rates, phycocolloid yield and quality of the red seaweedsGracilaria sp,Pterocladia capillacea,Hypnea musciformis, andHypnea cornuta in field studies in Israel. Aquaculture 40: 57–66.

  13. Gabrielson PW, Cheney DP (1987) Morphology and taxonomy ofMeristiella gen. nov. (Solieriaceae, Rhodophyta). J. Phycol. 23: 481–493.

  14. Gerard VA, Du Bois KR (1988) Temperature ecotypes near the southern boundary of the kelpLaminaria saccharina. Mar. Biol. 97: 575–580.

  15. Gessner F (1970) Temperature. Plants. In Kinne O (ed.) Marine Ecology. Wiley - Interscience, London, 705–820.

  16. Gorshkov SG (1979) World Ocean Atlas. 2. Atlantic and Indian Oceans. Pergamon Press, Oxford, 352 pp.

  17. Kim DH (1970) Economically importance seaweeds in Chile. I.Gracilaria. Bot. mar. 13: 140–162.

  18. Lobban CS, Harrison PJ, Duncan MJ (1985) The physiological ecology of seaweeds. Cambridge U.P., Cambridge, 242 pp.

  19. Lüning K (1990) Seaweeds. Their environment, biogeography and ecophysiology. J. Wiley & Sons, New York, 527 pp.

  20. Lüning K, Freshwater W (1988) Temperature tolerance of Northeast Pacific marine algae. J. Phycol. 24: 310–315.

  21. Lüning K, Guiry MD, Masuda M (1987) Upper temperature tolerance of North Atlantic and North Pacific geographical isolates ofChondrus species (Rhodophyta). Helgoländer wiss. Meeresunters. 41: 297–306.

  22. Mayer AMS (1981) Studies onGracilaria sp. in Bahia Arredondo, Chubut province Argentina. Proc. Int. Seaweed Symp. 10: 705–710.

  23. McLachlan J, Bird CJ (1984) Geographical and experimental assessment of the distribution ofGracilaria species (Rhodophyta, Gigartinales) in relation to temperature. Helgoländer wiss. Meeresunters. 38: 319–334.

  24. Oliveira EC (1977) Algas marinhas bentônicas do Brasil. Thesis. Universidade de São Paulo, São Paulo, 407 pp.

  25. Oliveira EC (1981) Marine phycology and exploitation of seaweeds in South America. Proc. Int. Seaweed Symp. 10: 97–112.

  26. Oliveira EC (1990) The rationale for seaweed cultivation in South America. In Oliveira EC, Kautsky N (ed.) Cultivation of seaweeds in Latin America. Universidade de São Paulo, São Paulo, 135–141.

  27. Oliveira EC, Alveal K (1991) The mariculture ofGracilaria (Rhodophyta) for the production of agar. In Akatsuka I (ed.) Introduction to Applied Phycology. The Hague, 553–564.

  28. Santelices B (1976) Notas sobre cultivo masivo de algunas especies de Gelidiales (Rhodophyta). Revta Biol. Mar. 16: 27–33.

  29. Santelices B (1978) Multiple interaction of factors in the distribution of some Hawaiian Gelidiales (Rhodophyta). Pacif. Sci. 32: 110–147.

  30. Santelices B (1989) Algas Marinas de Chile. Distribución. Ecologia. Utilización. Diversidad. Univ. Catolica de Chile, Santiago, 399 pp.

  31. Santelices B, Fonck E (1979) Ecologia y cultivo deGracilaria lemanaeformis. In Santelices B (ed.), Actas I Symp. Algas Mar. Chilenas. Subsecretaria de Pesca, Ministerio de Economia, Fomento y Reconstrucción. 165–200.

  32. Stewart J (1984) Vegetative growth rates ofPterocladia capillacea (Gelidiaceae, Rhodophyta). Bot. mar. 27: 85–94.

  33. Taylor WR (1960) Marine algae of the eastern tropical and subtropical coasts of the Americas. Univ. Michigan Stud., Sci. Ser. 21: ix + 870 pp.

  34. Ugadim Y (1985) Estudos taxonômicos deGelidium ePterocladia (Gelidiaceae - Nemaliales - Rhodophyta) do Brasil. Thesis, Universidade de São Paulo, São Paulo, 218 pp.

  35. Valentin J (1984) Analyse des paramètres hydrobiologiques dans la remontée de Cabo Frio, Brésil. Mar. Biol. 82: 259–276.

  36. Yarish C, Breeman AM, van den Hoek C (1986) Survival strategies and temperature responses of seaweeds belonging to different biogeographic distribution groups. Bot. mar. 29: 215–230.

  37. Yokoya NS (1989) Influência da temperatura e salinidade no crescimento de algumas espécies de agarófitas e carragenófitas — Implicações práticas e biogeográficas. Thesis, Universidade de São Paulo. São Paulo, 157 pp.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yokoya, N.S., Oliveirã, E.C. Temperature responses of economically important red algae and their potential for mariculture in Brazilian waters. J Appl Phycol 4, 339–345 (1992). https://doi.org/10.1007/BF02185791

Download citation

Key words

  • temperature
  • growth
  • red algae mariculture
  • Brazil