Journal of Statistical Physics

, Volume 79, Issue 3–4, pp 585–611 | Cite as

On the statistical mechanics approach in the random matrix theory: Integrated density of states

  • A. Boutet de Monvel
  • L. Pastur
  • M. Shcherbina
Articles

Abstract

We consider the ensemble of random symmetricn×n matrices specified by an orthogonal invariant probability distribution. We treat this distribution as a Gibbs measure of a mean-field-type model. This allows us to show that the normalized eigenvalue counting function of this ensemble converges in probability to a nonrandom limit asn→∞ and that this limiting distribution is the solution of a certain self-consistent equation.

Key Words

Random matrix integrating density of states statistical mechanics mean field-theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Wigner, Statistical properties of real symmetric matrices with many dimensions,Can. Math. Proc. 1957:174–198.Google Scholar
  2. 2.
    M. L. Mehta,Random Matrices (Academic Press, New York, 1967).Google Scholar
  3. 3.
    V. L. Girko,Spectral Theory of Random Matrices (Kluwer, Dordrecht, 1990).Google Scholar
  4. 4.
    F. Haake,Quantum Signatures of Chaos (Springer-Verlag, Heidelberg, 1991).Google Scholar
  5. 5.
    R. Fernandez, J. Frohlich, and A. Sokal,Random Walks, Critical Phenomena and Triviality in the Quantum Field Theory (Springer-Verlag, Heidelberg, 1992).Google Scholar
  6. 6.
    E. Brezin, C. Itzykson, G. Parisi, and J. Zuber, Planar diagrams,Commun. Math. Phys. 59:35–51 (1978).CrossRefGoogle Scholar
  7. 7.
    D. Bessis, C. Itzykson, and J. Zuber, Quantum field theory techniques in graphical enumeration.Adv. Appl. Math. 1:109–157 (1980).CrossRefGoogle Scholar
  8. 8.
    D. Lechtenfeld, A. Ray, and R. Ray, Phase diagram and orthogonal polynomials in multiple-well matrix models,Int. J. Mod. Phys. 6:4491–4515 (1991).CrossRefGoogle Scholar
  9. 9.
    L. Pastur, On the universality of the level spacing distribution for some ensemble of random matrices,Lett. Math. Phys. 25:259–265 (1992).CrossRefGoogle Scholar
  10. 10.
    F. J. Dyson, Statistical theory of the energy levels of the complex system. I–III,J. Math. Phys. 3:379–414 (1962).Google Scholar
  11. 11.
    M. Kac, G. Uhlenbeck, and P. Hemmer, On the van-der-Waals theory of vapor liquid equilibrium,J. Math. Phys. 4:216–247 (1963).CrossRefGoogle Scholar
  12. 12.
    P. Hemmer and J. Lebowitz, System with weak long-range potentials, inPhase Transitions and Critical Phenomena (Academic Press, New York, 1973).Google Scholar
  13. 13.
    L. Pastur and M. Shcherbina, Long-range limit of correlation functions of lattice systems,Teor. Mat. Fiz. 61:3–16 (1984) [in Russian].Google Scholar
  14. 14.
    M. Shcherbina, Classical Heisenberg model at zero temperature,Teor. Mat. Fiz. 81:134–144 (1989) [in Russian].Google Scholar
  15. 15.
    K. Demetrefi, Two-dimensional quantum gravity, matrix models and string theory,Int. J. Mod. Phys. A 8:1185–1244 (1993).CrossRefGoogle Scholar
  16. 16.
    E. Brezin and A. Zee, Universality of the correlations between eigenvalues of large random matrices,Nucl. Phys. B 402:613–627 (1993).CrossRefGoogle Scholar
  17. 17.
    G. M. Cicuta, L. Molinari, and E. Montaldi, Largen phase transition in low dimensions,Mod. Phys. Lett. A 1:125–129 (1986).CrossRefGoogle Scholar
  18. 18.
    N. I. Muskhelishvili,Singular Integral Equations (Noordhoff, Groningen, 1953).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. Boutet de Monvel
    • 1
  • L. Pastur
    • 2
  • M. Shcherbina
    • 2
  1. 1.Laboratory of Mathematical Physics and GeometryUniversité Paris VIIParis Cedex 05France
  2. 2.Mathematical DivisionInstitute for Low Temperature PhysicsKharkovUkraine

Personalised recommendations