Advertisement

Journal of Applied Phycology

, Volume 5, Issue 6, pp 573–580 | Cite as

Nutritional properties of four marine microalgae for albino rats

  • C. Herrero
  • J. Abalde
  • J. Fabregas
Article

Abstract

The nutritive value of the marine microalgaeTetraselmis suecica, Isochrysis galbana, Dunaliella tertiolecta andChlorella stigmatophora was studied in diets given to rats. Biological assays were carried out in order to determine the Protein Efficiency Ratio (PER) and the Food Conversion Efficiency (FCE). Each dried microalga was fed to weaning Wistar albino rats as the sole protein source at a protein level of 12%. Control rats were given diets containing 12 % casein. Food consumption was similar in all groups. PER values obtained were 1.14 withT. suecica diet, 1.13 withI. galbana diet, 2.07 withD. tertiolecta diet and 1.13 withC. stigmatophora diet (casein, 2.50). FCE values followed a similar pattern. The data showed that the marine microalgaD. tertiolecta is a source of protein of good quality. Its PER is quite high, compared to vegetable and cereal proteins, and compares favourably with other microbial protein sources, such as yeasts or different freshwater microalgae. Haematological tests showed no significant differences among the groups in haemoglobin levels, red and white blood cell counts, differential count and mean corpuscular volume. Different blood parameters were also determined and a significant decrease in triglycerides levels appeared with all the microalgal diets, whereas a significant decrease in cholesterol appeared inD. tertiolecta andC. stigmatophora diets.

Key words

marine microalgae protein efficiency ratio food conversion efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abalde J, Fabregas J, Herrero C (1991) -Carotene, vitamin C and vitamin E content of the marine microalgaDunaliella tertiolecta cultured with different nitrogen sources. Biores. Technol. 38: 121–125.Google Scholar
  2. Anusuya Devi M, Venkataramen LV, Rajasekaran T (1979) Hypochoresterolemic effect of diets containing algae on albino rats, Nutr. Rep. Int. 20: 83–90.Google Scholar
  3. Anusuya Devi M, Venkataraman LV (1983) Hypochoresterolemic effect of the blue-green algaeSpirulina platensis in albino rats. Nutr. Rep. Int. 28: 519.Google Scholar
  4. AOAC (1980) Official Methods of Analysis, 13th edn. Association of Official Agricultural Chemists, Washington, DC.Google Scholar
  5. Becker EW (1980) Comparative toxicological studies with algae in India, Thailandia and Perú. In Shelef G, Soccer CJ (eds), Algae Biomass. Production and Use. Elsevier/North Holland Biomedical Press, Amsterdam, 767–786.Google Scholar
  6. Becker EW (1986) Nutritional properties of microalgae: potentials and contraints. In Richmond A (ed.), CRC Handbook of Microalgae Mass Culture. CRC Press. Boca Raton, Florida, 339–420.Google Scholar
  7. Becker EW (1988) Micro-algae for human and animal consumption. In Borowitzka MA, Borowitzka LJ (eds), Microalgal Biotechnology. Cambridge U.P., Cambridge, 222–256.Google Scholar
  8. Becker EW, Venkataraman LV (1982) Biotechnology and Exploitation of Algae- the Indian Approach. Deutsche Gesellschaft für Technische Zusammenarbeit GmbH, Eschborn, F.D.R. 216 pp.Google Scholar
  9. Becker EW, Venkataraman LV (1984) Production and utilization of the blue-green algaSpirulina in India. Biomass 4: 105–125.Google Scholar
  10. Becker EW, Venkataraman LV, Khanum PM 1976. Effect of different methods of processing on the protein efficiency ratio of the green algaScenedesmus acutus. Nutr. Rep. Int. 14: 305–314.Google Scholar
  11. Borowitzka MA (1988a) Vitamins and fine chemical from micro-algae. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 153–198.Google Scholar
  12. Borowitzka MA (1988b) Fats, oils and hydrocarbons. In M.A. Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 257–287.Google Scholar
  13. Cheeke PR, Gasper E, Boersma L, Oldfield JE (1977) Nutritional evaluation with rats of algae (Chlorella) grown on swine manure. Nutr. Rep. Int. 16: 579–585.Google Scholar
  14. Eggum, BO (1970) Blood urea measurement as a technique for assessing protein quality. Br. J. Nutr. 24: 983–988.PubMedGoogle Scholar
  15. De Pauw N, Persoone G (1988) Micro-algae for aquaculture. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 197–221.Google Scholar
  16. Fabregas J, Herrero C (1985) Marine microalgae as potential source of single cell protein (SCP). Appl. Microbiol. Biotechnol. 23: 110–113.Google Scholar
  17. Fabregas J, Herrero C (1986) Marine microalgae was potential source of minerals in fish diets. Aquaculture 51: 237–243.Google Scholar
  18. Fabregas J, Herrero C (1990) Vitamin content of four marine microalgae. Potential use as source of vitamins in nutrition. J. Ind. Microbiology. 5: 259–264.Google Scholar
  19. Fabregas J, Herrero C, Parafita M, Paz JM, Cabezas B, Abalde J (1988) Decrease in plasma cholesterol, triglycerides and CPK levels in rats fed on the marine microalgaDunaliella tertiolecta. Plant. Med. 54: 109–111.Google Scholar
  20. Herrero C, Vecino E, Abalde J (1992) The marine microalgaDunaliella tertiolecta (Butcher): Nutritional properties and hypocholesterolemic effects. In Villa TG, Abalde J (eds), Profiles on Biotechnology. Santiago University Press. Santiago de Compostela, 271–288.Google Scholar
  21. LASA (1969) Dietary standards for laboratory rats and mice. London: Laboratory Animals Ltd.Google Scholar
  22. Oliveira L, Bisalputra T & Antia NJ (1980) Ultraestructural observation of the surface coat ofDunaliella tertiolecta from staining with cationic dyes and enzymes treatment. New Phytol., 85: 385–392.Google Scholar
  23. Parkison G (1987) New techniques may squeze more chemicals from algae. Chem. Eng. 94: 19–22.Google Scholar
  24. Payer HD, Pabst W, Runkel KH (1980) Review of the nutritional and toxicological properties of the green algaScenedesmus obliquus as single cell protein. In Shelef G, Soeder CJ (eds), Algae Biomass. Production and Use. Elsevier/North Holland Biomedical Press, Amsterdam, 787–797.Google Scholar
  25. Rolle I, Pabst W (1980) Über die cholesterinsenkende Wirkung der einzelligen GrünalgeScenedesmus acutus 276-3a. I: Wirkung von Walzengetrockneter Algensubsta. Nutr. Metab. 24: 302–313.PubMedGoogle Scholar
  26. Richmond A (1986) Microalgae of Economic Potential. In Richmond A (ed.) CRC Handbook of Microalgae Mass Culture. CRC Press. Boca Raton, Florida, 199–244.Google Scholar
  27. Thananunkul D, Reungmanipaitoon S, Prasomsup U, Pongjiwanich S, Klafs HJ (1977) The protein quality of algae produced in Thailand as determined by biological assays with rats. Food (IFRPD, Bangkok) 10: 200–209.Google Scholar
  28. Vahouny GV (1985) Drugs affecting lipid metabolism. In Kritchevsky D, Holmes WL, Palleti R (eds). Plenum Publishing Corporation VIII: 265–279.Google Scholar
  29. Venkataraman LV (1983) Blue-Green AlgaSpirulina. CFTRI Press. Mysore, India, 100 pp.Google Scholar
  30. Venkataraman LV, Becker EW, Rajasekaran T, Mathew KR (1980) Investigations on toxicology and safety of algal diets in albino rats. Food and Cosmetics Toxicology 18: 271–275.PubMedGoogle Scholar
  31. Wallach MD (1979) Interpretation of Diagnostic Test. A Handbook Synopsis of Laboratory Medicina. Little, Brown & Company, Boston, 639 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • C. Herrero
    • 1
  • J. Abalde
    • 1
  • J. Fabregas
    • 2
  1. 1.Laboratorio de Microbiología, Departamento de Biología Celular y MolecularFacultad de Ciencias, Universidad de La Coruña, Campus de A Zapateira s/n.La CoruñaSpain
  2. 2.Laboratorio de Microbiologia, Departamento de Microbiología y ParasitologíaFacultad de Farmacia, Universidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations