Photosynthesis Research

, Volume 41, Issue 1, pp 261–275 | Cite as

Genes encoding two chlorosome components from the green sulfur bacteriaChlorobium vibrioforme strain 8327D andChlorobium tepidum

  • Soohee Chung
  • Gerhard Frank
  • Herbert Zuber
  • Donald A. Bryant
Group 6: Genes and Evolution Regular Papers

Abstract

Chlorosomes of the thermophilic green sulfur bacteriumChlorobium tepidum have been isolated and their polypeptides analyzed by polyacrylamide gel electrophoresis and amino acid sequencing. These chlorosomes were shown to contain nine different polypeptides ranging in mass from approximately 6 to 27 kDa. ThecsmA gene, encoding a highly abundant chlorosome protein with a mass of 6.2 kDa, were cloned and sequenced from bothChlorobium vibrioforme strain 8327D andChlorobium tepidum. The gene from both species predicts identical proteins of 79 amino acid residues, and a comparison of the deduced sequence with that determined for the protein indicates that 20 amino acid residues are post-translationally removed from the carboxyl-terminus of the CsmA precursor. Transcript analyses showed that inChlorobium tepidum thecsmA gene is encoded on two transcripts of approximately 350 and 940 nucleotides; the smaller transcript probably results from processing of the larger RNA molecule. Transcription of the longer mRNA initiates 68 basepairs upstream from the start codon of a second open reading frame that is located 154 nucleotides 5′ tocsmA and that predicts a protein of 139 amino acid residues. The amino-terminal sequence determined for a 14.5 kDa polypeptide in the chlorosomes ofChlorobium tepidum matched the sequence deduced from this open reading frame except for the absence of the initiator methionine residue; accordingly, this gene has been namedcsmC. A comparison of the genomic organization of thecsmA loci inChlorobium vibrioforme, Chlorobium tepidum, andChloroflexus aurantiacus were found to be surprisingly similar.

Key words

chlorosome nucleotide sequence light-harvesting antenna green sulfur bacteria bacteriochloro phyllc 

Abbreviations

BChl

bacteriochlorophyll

bp

basepair

C.

Chloroflexus

Cb.

Chlorobium

Csm

chlorosome protein

csm

gene encoding a chlorosome protein

FMO protein

Fenna-Matthews-Olson protein that binds seven BChla molecules per monomer

ORF

open reading frame

PMSF

phenylmethanesulfonyl fluoride

SDS

sodium dodecylsulfate

SSC

standard saline-citrate

Tris

tris-(hydroxymethyl) aminomethane

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K (1987) Current Protocols in Molecular Biology. Wiley & Sons, New YorkGoogle Scholar
  2. Belasco JG, Beatty JT, Adams CW, vonGabain A and Cohen SN (1985) Differential expression of photosynthetic genes inR. capsulata results from segmental differences in stability within the polycistronicrxcA transcript. Cell 40: 171–181Google Scholar
  3. Bérard J, Bélanger G, Corriveau P and Gingras G (1986) Molecular cloning and sequence of the B880 holochrome gene fromRhodospirillum rubrum. J Biol Chem 261: 82–87Google Scholar
  4. Birnboim HC and Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7: 1513–1523Google Scholar
  5. Blankenship RE, Brune DC and Wittmershaus BP (1988) Chlorosome antennas in green photosynthetic bacteria. In: Stevens SEJr and Bryant DA (eds) Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models, pp 32–46. American Society of Plant Physiologists, Rockville, MDGoogle Scholar
  6. Blum H, Beier H and Gross HT (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93–99Google Scholar
  7. Bolivar F (1978) Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying uniqueEcoRI sites for selection ofEcoRI generated recombinant DNA molecules. Gene 4: 121–136Google Scholar
  8. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256: 1604–1607Google Scholar
  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72: 248–254Google Scholar
  10. Brune DC, Nozawa T and Blankenship RE (1987) Antenna organization in green photosynthetic bacteria. I. Oligomeric bacterichlorophyllc as a model for the 740 nm absorbing bacteriochlorophyllc inChloroflexus aurantiacus chlorosomes. Biochemistry 26: 8644–8652Google Scholar
  11. Bryant DA and Tandeaude Marsac N (1988) Isolation of genes encoding components of the photosynthetic apparatus. Meth Enzymol 167: 755–765Google Scholar
  12. Büttner M, Xie D-L, Nelson H, Pinther W, Hauska G, and Nelson N (1992) Photosynthetic reaction center genes in green sulfur bacteria and photosystem I are related. Proc Natl Acad Sci USA 85: 8135–8139Google Scholar
  13. Chen C-M, Misra TK, Silver S and Rosen BP (1986) Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem 261: 15030–15038Google Scholar
  14. Chung S and Bryant DA (1992) Genes encoding chlorosome components in the green sulfur bacteriaChlorobium vibrioforme 8327D andChlorobium tepidum. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 69–72. Kluwer Academic Publishers, DordrechtGoogle Scholar
  15. Cohen-Bazire G (1963) Some observations on the organization of the photosynthetic apparatus in purple and green bacteria. In: Gest H, SanPietro A and Vernon LP (eds) Bacterial Photosynthesis, pp 89–110. Antioch Press, Yellow Springs, OHGoogle Scholar
  16. Cohen-Bazire G, Pfennig N and Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22: 207–225Google Scholar
  17. Cruden DL, Cohen-Bazire G and Stanier RY (1970) Chlorobium vesicles: the photosynthetic organelles of green bacteria. Nature 228: 1345–1347Google Scholar
  18. Damerval T, Houmard J, Guglielmi G, Cziszar K, and Tandeaude Marsac N (1987) A developmentally regulatedgvpABC operon is involved in the formation of gas vesicles in the cyanobacteriumCalothrix 7601. Gene 54: 83–92Google Scholar
  19. deLorimier R, Bryant DA, Porter RD, Liu W-Y, Jay E and Stevens SEJr (1984) Genes for the alpha and beta subunits of phycocyanin. Proc Natl Acad Sci USA 81: 7946–7950Google Scholar
  20. Dracheva S, Williams JC and Blankenship RE (1992) Cloning and sequencing of the FMO-protein gene fromChlorobium tepidum. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 53–56. Kluwer Academic Publishers, DordrechtGoogle Scholar
  21. Dubbs JM and Bryant DA (1991) Molecular cloning and transcriptional analysis of thecpeBA operon of the cyanobacteriumPseudanabaena species PCC 7409. Mol Microbiol 5: 3073–3085Google Scholar
  22. Eckhardt A, Brunisholz R, Frank G and Zuber H (1990) Selective solubilization of chlorosome proteins inChloroflexus aurantiacus. FEBS Lett 267: 199–202Google Scholar
  23. Erickson JM and Rochaix J-D (1992) The molecular biology of photosystem II. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, pp 101–177. Elsevier Science Publishers, AmsterdamGoogle Scholar
  24. Feick RG and Fuller RC (1984) Topography of the photosynthetic apparatus ofChloroflexus aurantiacus. Biochemistry 23: 3693–3700Google Scholar
  25. Feick RG, Fitzpatrick M and Fuller RC (1982) Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacteriumChloroflexus aurantiacus. J Bacteriol 150: 905–915Google Scholar
  26. Feinberg AP and Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137: 266–267Google Scholar
  27. Frank G (1989) New aspects in isocratic HPLC separation of phenylthiohydantoin amino acids through application of ionic detergents. In: Wittmann-Liebold B (ed) Methods in Protein Sequence Analysis, pp 116–121. Springer-Verlag, BerlinGoogle Scholar
  28. Gerola PD and Olson JM (1986) A new bacteriochlorophylla-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848: 69–76Google Scholar
  29. Gerola PD, Højrup P, Knudsen K, Roepstorff P and Olson JM (1988) The bacteriochlorophyllc-binding protein from chlorosomes ofChlorobium limicola f.thiosulfatophilum. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 43–52. Plenum, New YorkGoogle Scholar
  30. Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W and Zuber H (1992) Phycobiliosme structure in the cyanobacteriaMastigocladus laminosus andAnabaena sp. PCC 7120. Eur J Biochem 205: 907–915Google Scholar
  31. Griebenow K and Holzwarth AR (1989) Pigment organization and energy transfer in green bacteria. 1. Isolation of native chlorosomes free of bound bacteriochlorophylla fromChloroflexus aurantiacus by gel-electrophoretic filtration. Biochim Biophys Acta 973: 235–240Google Scholar
  32. Griebenow K and Holzwarth AR (1990) Biochemical evidence for chromophore-chromophore interactions as the main organizational principle in chlorosomes ofChloroflexus aurantiacus. In: Drews G (ed) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 375–381. Plenum, New YorkGoogle Scholar
  33. Harley CB and Reynolds RP (1987) Analysis ofE. coli promoter sequences. Nucl Acids Res 15: 2343–2359Google Scholar
  34. Hattori M and Sakaki Y (1986) Dideoxy sequencing method using denatured plasmid templates. Anal Biochem 152: 232–238Google Scholar
  35. Hirota M, Tsuji K, Shimada K and Matsuura K (1992) Composition and organization of chlorosome-like bacteriochlorophyllc-lipid aggregates in aqueous solution. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 81–84. Kluwer Academic Publishers, DordrechtGoogle Scholar
  36. Højrup P, Gerola P, Hansen HF, Mikkelsen JM, Shahed AE, Knudsen J, Roepstorff P and Olson JM (1991) The amino acid sequence of a major protein component in the light harvesting complex of the green photosynthetic bacteriumChlorobium limicola f.thiosulfatophilum. Biochim Biophys Acta 1077: 220–224Google Scholar
  37. Holmes DS and Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Analyt Biochem 114: 193–197Google Scholar
  38. Holt SC, Conti SF and Fuller RC (1966) Photosynthetic apparatus in the green bacteriumChloropseudomonas ethylicum. J Bacteriol 91: 311–323Google Scholar
  39. Holzwarth AR, Griebenow K and Schaffner K (1990) A photosynthetic antenna system which contains a protein-free chromophore aggregate. Z Naturforsch 45c: 203–206Google Scholar
  40. Kanazawa H, Kayano T, Kiyasu T and Futai M (1982) Nucleotide sequence of the genes for b and e subunits of proton-translocating ATPase fromEscherichia coli. Biochem Biophys Res Commun 105: 1257–1264Google Scholar
  41. Klug G and Cohen SN (1990) Rate-limiting endonucleolytic cleavage of the 2.7 kbpuf mRNA ofRhodobacter capsulatus is influenced by oxygen. In: Drews G and Dawes EA (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 123–127. Plenum, New YorkGoogle Scholar
  42. Maniatis T, Fritsch EF and Sambrook J (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, NYGoogle Scholar
  43. Mimuro M, Hirota M, Shimada K, Nishimura Y, Yamazaki I and Matsuura K (1992) Excitation energy transfer processes in green photosynthetic bacteria: Analysis in a three-dimensionally oriented system in the picosecond time range. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 17–24. Kluwer Academic Publishers, DordrechtGoogle Scholar
  44. Niedermeier G, Scheer H and Feick RG (1992) The functional role of protein in the organization of bacteriochlorophyllc in chlorosomes ofChloroflexus aurantiacus. Eur J Biochem 204: 685–692Google Scholar
  45. Norel F and Elmerich C (1987) Nucleotide sequence and functional analysis of the twonifH copies ofRhizobium ORS571. J Gen Microbiol 133: 1563–1576Google Scholar
  46. Nozawa T, Suzuki M, Ohtomo K, Mirishita Y, Konami H and Madigan MT (1991) Aggregation structure of bacteriochlorophyllc in chlorosomes fromChlorobium tepidum. Chemistry Lett 1991: 1641–1644Google Scholar
  47. Nozawa T, Ohtomo K, Suzuki M, Morishita Y and Konami H (1992) CP/MAS13C NMR studies on antenna structures in green bacteria. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 97–100. Kluwer Academic Publishers, DordrechtGoogle Scholar
  48. Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594: 33–51Google Scholar
  49. Olson JM, Brune DC and Gerola PD (1990) Organization of chlorophyll and protein in chlorosomes. In: Drews G (ed) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 227–234. Plenum, New YorkGoogle Scholar
  50. Ormerod JG (1988) Natural genetic transformation inChlorobium. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 315–319. Plenum, New YorkGoogle Scholar
  51. Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  52. Sanger F, Nicklen S and Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467Google Scholar
  53. Schägger H and vonJagow G (1987) Tricine-sodium dodecylsulfate polyacrylamide gel electrophoresis of the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368–379Google Scholar
  54. Schmidt K (1980) A comparative study of the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes fromChloroflexus aurantiacus strain Ok-70-fl andChlorobium limicola f.thiosulfatophilum strain 6230. Arch Microbiol 124: 21–31Google Scholar
  55. Shiozawa JA, Lottspeich F, Oesterhelt D and Feick R (1989) The primary structure of theChloroflexus aurantiacus reaction-center polypeptides. Eur J Biochem 180: 75–84Google Scholar
  56. Souillard N and Sibold L (1986) Primary structure and expression of a gene homologous tonifH (nitrogenase Fe protein) from the archaebacteriumMethanococcus voltae. Mol Gen Genet 203: 21–28Google Scholar
  57. Staehelin LA, Golecki JR, Fuller RC and Drews G (1978) Visualization of supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells ofChloroflexus aurantiacus. Arch Microbiol 119: 269–277Google Scholar
  58. Staehelin LA, Golecki JR and Drews G (1980) Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites inChlorobium limicola. Biochim Biophys Acta 589: 30–45Google Scholar
  59. Stanier RY and Smith JHC (1960) The chlorophylls of green bacteria. Biochim Biophys Acta 41: 478–484Google Scholar
  60. Stoltz JF, Fuller RC and Redlinger TE (1990) Pigment-protein diversity in chlorosomes of green phototrophic bacteria. Arch Microbiol 154: 422–427Google Scholar
  61. Theroux SJ, Redlinger TE, Fuller RC and Robinson SJ (1990) Gene encoding the 5.7-kilodalton chlorosome protein ofChloroflexus aurantiacus: Regulated message levels and a prediced carboxyterminal protein extension. J Bacteriol 172: 4497–4504Google Scholar
  62. Tronrud DE, Schmid MF and Matthews BW (1986) Structure and X-ray amino acid sequence of a bacteriochlorophylla protein fromProsthecochloris aestuarii refined at 1.9 Å resolution. J Mol Biol 188: 443–454Google Scholar
  63. Wagner-Huber R, Brunisholz R, Frank G and Zuber H (1988) The BChlc/e-binding polypeptides from chlorosomes of green photosynthetic bacteria. FEBS Lett 239: 8–12Google Scholar
  64. Wagner-Huber R, Fischer U, Brunisholz R, Rümbeli M, Frank G and Zuber H (1990) The primary structure of the presumable BChld-binding polypeptide ofChlorobium vibrioforme f. thiosulfatophilum. Z Naturforsch 45c: 818–822Google Scholar
  65. Wahlund TM, Woese CR, Castenholz RW and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs,Chlorobium tepidum sp. nov. Arch Microbiol 152: 81–90Google Scholar
  66. Watanabe Y, Feick RG and Shiozawa JA (1992) Cloning and sequencing of the genes encoding the polypeptides of the B806–866 light-harvesting complex ofChloroflexus aurantiacus. In: Murata N (ed) Research in Photosynthesis, pp 41–44. Kluwer Academic Publishers, DordrechtGoogle Scholar
  67. Wechsler T, Suter F, Fuller RC and Zuber H (1985) The complete amino acid sequence of the bacteriochlorophyllc binding polypeptide of the green photosynthetic bacteriumChloroflexus aurantiacus. FEBS Lett 181: 173–178Google Scholar
  68. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271Google Scholar
  69. Wullink W, Knudsen J, Olson JM, Redlinger TE and VanBruggen EFJ (1991) Localization of polypeptides in isolated chlorosomes from green phototrophic bacteria by immuno-gold labeling electron microscopy. Biochim Biophys Acta 1060: 97–105Google Scholar
  70. Yanisch-Perron C, Vieira J and Messing J (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Soohee Chung
    • 1
  • Gerhard Frank
    • 2
  • Herbert Zuber
    • 2
  • Donald A. Bryant
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Institut für Molekularbiologie und BiophysikEidgenössische Technische HochschuleZürichSwitzerland

Personalised recommendations