Advertisement

Photosynthesis Research

, Volume 41, Issue 1, pp 35–52 | Cite as

Chloroflexus-like organisms from marine and hypersaline environments: Distribution and diversity

  • Beverly K. Pierson
  • Diane Valdez
  • Mark Larsen
  • Elizabeth Morgan
  • E. Erin Mack
Group 3: New Organisms, Ecology and Biochemistry Regular Papers

Abstract

We report the presence of a diverse number ofChloroflexus-like organisms in intertidal marine and submerged hypersaline microbial mats using light, infrared fluorescence, and electron microscopy. The intertidal organisms appear morphologically very similar to thermophilicC. aurantiacus while the 2 hypersaline strains are larger and have a more complex ultrastructure composed of chlorosome-bearing internal membranes that appear to arise as invaginations of the cell membrane. By comparing spectroradiometry of microbial mat layers with microscopic observations, we have confirmed that theChloroflexus-like organisms are major constituents of the hypersaline microbial mat communities. In situ studies on mat layers dominated byChloroflexus-like organisms showed that sulfide-dependent photoautotrophic activity sustained by near infrared radiation prevailed. Autoradiographic analyses revealed that autotrophy was sustained in the filaments by 750 nm radiation. Three morphologically distinct strains are now maintained in mixed culture. One of these appears to be growing photoautotrophically.

Key words

bacteriochlorophylls Chloroflexaceae microbial mats Oscillochloris phototrophic bacteria ultrastructure 

Abbreviations

MCLO

MarineChloroflexus-Like Organism

ppt

parts per thousand (used to report salinities)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awramik SM (1992) The oldest records of photosynthesis. Photosynth Res 33: 75–89Google Scholar
  2. Bergstein-Ben Dan T (1988) Physiological aspects of high sulfide tolerance in a photosynthetic bacterium. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green Photosynthetic Bacteria, pp 295–303. Plenum Press, New YorkGoogle Scholar
  3. Castenholz RW, D'Amelio E, Farmer JD, Jørgensen BB, Palmisano AC, Pierson BK and Ward DM (1992) Modern mat-building microbial communities: Methods of investigation and supporting data. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere: A Multidisciplinary Study, pp 821–853. Cambridge University Press, CambridgeGoogle Scholar
  4. D'Amelio ED, Cohen Y and DesMarais DJ (1987) Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles ofMicrocoleus chthonoplastes in hypersaline cyanobacterial mats. Arch Microbiol 147: 213–220Google Scholar
  5. D'Amelio E, Cohen Y and DesMarais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 97–113. Am Soc Microbiol, Washington, DCGoogle Scholar
  6. DesMarais DJ, D'Amelio ED, Farmer JD, Jørgensen BB, Palmisano AC and Pierson BK (1992) Case study of a modern microbial mat-building community: The submerged cyanobacterial mats of Guerrero Negro, Baja California Sur, Mexico. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere: A Multidisciplinary Study, pp 324–333. Cambridge University Press, CambridgeGoogle Scholar
  7. Giovannoni SJ, Revsech NP, Ward DM and Castenholz RW (1987) Obligately phototrophicChloroflexus: Primary production in anaerobic hot spring microbial mats. Arch Microbiol 147: 80–87Google Scholar
  8. Gorlenko VM (1975) Characteristics of filamentous phototrophic bacteria from freshwater lakes. Mikrobiologiya (Engl transl) 44: 682–684Google Scholar
  9. Gorlenko VM (1988) Ecological niches of green sulfur gliding bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackerbrandt EE and Trüper HG (eds) Green Photosynthetic Bacteria, pp 257–267. Plenum Press, New YorkGoogle Scholar
  10. Gorlenko VM (1989a) Genus ‘Oscillochloris’. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey's Manual of Systematic Bacteriology, pp 1703–1706. Williams & Wilkins, BaltimoreGoogle Scholar
  11. Gorlenko VM (1989b) GenusChloronema. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey's Manual of Systematic Bacteriology, pp 1706–1707. Williams & Wilkins, BaltimoreGoogle Scholar
  12. Javor B (1989) Hypersaline Environments: Microbiology and Biogeochemistry. Springer-Verlag, New YorkGoogle Scholar
  13. Jørgensen BB (1989) Light penetration, absorption, and action spectra in cyanobacterial mats. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 123–137. Am Soc Microbiol, Washington, DCGoogle Scholar
  14. Keppen OI, Baulina OI and Kondratieva EN (1994)Oscillochloris trichoides neotype strain DG-6. Photosynth Res 41: 29–33 (this issue)Google Scholar
  15. Keppen OI, Baulina OI, Lysenko OY and Kondratieva EN (1993) New green bacterium belonging to family Chloroflexaceae. Mikrobiologiya (Engl transl) 62: 179–185Google Scholar
  16. Kühl M and Jørgensen BB (1992) Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector. Limnol Oceanogr 37: 1813–1823Google Scholar
  17. Lowry OH, Rosebrough NJ, Farr AL and Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275Google Scholar
  18. Mack EE and Pierson BK (1988) Preliminary characterization of a temperate marine member of the Chloroflexaceae. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 237–241 Plenum Press, New YorkGoogle Scholar
  19. Olson JM and Pierson BK (1987) Evolution of reaction centers in photosynthetic prokaryotes. Internat Rev Cytol 108: 209–248Google Scholar
  20. Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA and Woese CR (1987) The green non-sulfur bacteria: A deep branching in the eubacterial line of descent. System Appl Microbiol 9: 47–53Google Scholar
  21. Palmisano AC, Cronin SE, D'Amelio ED, Munoz E and DesMarais DJ (1989) Distribution and survival of lipophilic pigments in a laminated microbial mat community near Guerrero Negro, Mexico. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 138–152. Am Soc Microbiol, Washington, DCGoogle Scholar
  22. Pfennig N (1975) Phototrophic bacteria and their role in the sulfur cycle. Plant Soil 43: 1–16Google Scholar
  23. Pfennig N and Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer K-H (eds) The Prokaryotes, 2nd edn, pp 3200–3221. Springer-Verlag, New YorkGoogle Scholar
  24. Pierson BK (1992) Introduction to modern mat-building microbial communities: A key to the interpretation of Proterozoic stromatolitic communities. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere: A Multidisciplinary Study, pp 247–251. Cambridge University Press, CambridgeGoogle Scholar
  25. Pierson BK (1994) The emergence, diversification, and role of photosynthetic eubacteria. In: Bengtson S (ed) Early Life on Earth, Nobel Symp No 84. Columbia University Press, New York (in press)Google Scholar
  26. Pierson BK and Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs,Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100: 5–24Google Scholar
  27. Pierson BK and Castenholz RW (1992) The family Chloroflexaceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer KH (eds) The Prokaryotes, 2nd edn, pp 3754–3774. Springer Verlag, New YorkGoogle Scholar
  28. Pierson BK and Castenholz RW (1994) Taxonomy and physiology of filamentous anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht (in press)Google Scholar
  29. Pierson BK and Howard HM (1972) Detection of bacteriochlorophyll containing microorganisms by infrared fluorescence photomicrography. J Gen Microbiol 73: 359–363Google Scholar
  30. Pierson BK and Olson JM (1989) Evolution of photosynthesis in anoxygenic phototrophic prokaryotes. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 402–427. Am Soc Microbiol, Washington, DCGoogle Scholar
  31. Pierson BK, Giovannoni SJ and Castenholz RW (1984) Physiological ecology of a gliding bacterium containing bacteriochlorophylla. Appl Environ Microbiol 47: 576–584Google Scholar
  32. Pierson BK, Oesterle A and Murphy GL (1987) Pigments, light penetration, and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts. FEMS Microbiol Ecol 45: 365–376Google Scholar
  33. Pierson BK, Sands VM and Frederick JL (1990) Spectral irradiance and distribution of pigments in a highly layered marine microbial mat. Appl Environ Microbiol 56: 2327–2340Google Scholar
  34. Schopf JW and Walter MR (1983) Archean microfossils: New evidence of ancient microbes. In: Schopf JW (ed) Earth's Earliest Biosphere, Its Origin and Evolution, pp 214–239. Princeton University Press, PrincetonGoogle Scholar
  35. Sprague SG and Fuller RC (1991) The green phototrophic bacteria and Heliobacteria. In: Stolz JF (ed) Structure of Phototrophic Prokaryotes, pp 79–103. CRC Press, Boca RatonGoogle Scholar
  36. Stolz JF (1983) Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico. I. Methods of in situ study of the laminated sediments. Precambrian Res 20: 479–492Google Scholar
  37. Stolz JF (1984) Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico: II Transmission electron microscopy as a diagnostic tool in studying microbial communities in situ. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 23–28. Alan R Liss, New YorkGoogle Scholar
  38. Stolz JF (1990) Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figueroa, Baja California, Mexico. BioSystems 23: 345–357Google Scholar
  39. Stolz JF (1991) The ecology of phototrophic bacteria. In: Stolz JF (ed) Structure of Phototrophic Prokaryotes, pp 105–123. CRC Press, Boca RatonGoogle Scholar
  40. Strauss G and Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacteriumChloroflexus aurantiacus, the 3-hydroxypropionate cycle. FEBS Eur J Biochem 215: 633–643Google Scholar
  41. Venetskaya SL and Gerasimenko LM (1988) Electron-microscopic study of microorganisms in a halophilic cyanobacterial community. Mikrobiologiya (Engl transl) 57: 377–383Google Scholar
  42. Walsh MM and Lowe DR (1985) Filamentous microfossils from the 3,500-myr-old Onverwacht group, Barberton Mountain Land, South Africa. Nature (London) 314: 530–532Google Scholar
  43. Walter MR (1983) Archean stromatolites: Evidence of the earth's earliest benthos. In: Schopf J (ed) Earth's Earliest Biosphere, Its Origin and Evolution, pp 187–213. Princeton University Press, PrincetonGoogle Scholar
  44. Widdel F and Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer K-H (eds) The Prokaryotes, 2nd edn, pp 3352–3378. Springer-Verlag, New YorkGoogle Scholar
  45. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Beverly K. Pierson
    • 1
  • Diane Valdez
    • 1
  • Mark Larsen
    • 1
  • Elizabeth Morgan
    • 1
  • E. Erin Mack
    • 2
  1. 1.Biology DepartmentUniversity of Puget SoundTacomaUSA
  2. 2.Microbiology DepartmentU.C. DavisDavisUSA

Personalised recommendations