Journal of Statistical Physics

, Volume 83, Issue 3–4, pp 637–659 | Cite as

Approximating the number of monomer-dimer coverings of a lattice

  • Claire Kenyon
  • Dana Randall
  • Alistair Sinclair


We study the problem of counting the number of coverings of ad-dimensional rectangular lattice by a specified number of monomers and dimers. This problem arises in several models in statistical physics, and has been widely studied. A classical technique due to Fisher, Kasteleyn, and Temperley solves the problem exactly in two dimensions when the number of monomers is zero (the dimer covering problem), but is not applicable in higher dimensions or in the presence of monomers. This paper presents the first provably polynomial-time approximation algorithms for computing the number of coverings with any specified number of monomers ind-dimensional rectangular lattices with periodic boundaries, for any fixed dimensiond, and in two-dimensional lattices with fixed boundaries. The algorithms are based on Monte Carlo simulation of a suitable Markov chain, and, in constrast to most Monte Carlo algorithms in statistical physics, have rigorously derived performance guarantees that do not rely on any assumptions. The method generalizes to counting coverings of any finite vertex-transitive graph, a class which includes most natural finite lattices with periodic boundary conditions.

Key Words

Monomer-dimer problem dimer coverings lattice statistics Monte Carlo methods relaxation time mixing time approximation algorithm Fisher-Kasteleyn-Temperley algorithm perfect matching monomer-dimer correlations vertex-transitive graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Bhattacharjee, J. F. Nagle, D. A. Huse, and M. E. Fisher, Critical behavior of a three-dimensional dimer model,J. Stat. Phys. 32:361–374 (1983).Google Scholar
  2. 2.
    J. A. Bondy and D. J. A. Welsh, A note on the monomer dimer problem.Proc. Camb. Phil. Soc. 62:503–505 (1966).Google Scholar
  3. 3.
    A. Z. Broder, How hard is it to marry at random? (On the approximation of the permanent), inProceedings of the 18th ACM Symposium on Theory of Computing (1986), pp. 50–58; Erratum, inProceedings of the 20th ACM Symposium on Theory of Computing (1988), p. 551.Google Scholar
  4. 4.
    E. G. D. Cohen, J. de Boer, and Z. W. Salsburg, A cell-cluster theory for the liquid state II,Physica XXI:137–147 (1955).Google Scholar
  5. 5.
    V. Elser, Solution of the dimer problem on a hexagonal lattice with boundary,J. Phys. A: Math. Gen. 17:1509–1513 (1984).Google Scholar
  6. 6.
    M. E. Fisher, Statistical mechanics of dimers on a plane lattice,Phys. Rev. 124:1664–1672 (1961).Google Scholar
  7. 7.
    M. E. Fisher and J. Stephenson, Statistical mechanics of dimers on a plane lattice II. Dimer correlations and monomers,Phys. Rev. 132:1411–1431 (1963).Google Scholar
  8. 8.
    R. H. Fowler and G. S. Rushbrooke, Statistical theory of perfect solutions,Trans. Faraday Soc. 33:1272–1294 (1937).Google Scholar
  9. 9.
    M. R. Garey and D. S. Johnson,Computers and Intractability (Freeman, San Francisco, 1979).Google Scholar
  10. 10.
    D. S. Gaunt, Exact series-expansion study of the monomer-dimer problem,Phys. Rev. 179:174–179 (1969).Google Scholar
  11. 11.
    E. A. Guggenheim,Mixtures (Clarendon Press, Oxford, 1952).Google Scholar
  12. 12.
    J. M. Hammersley, Existence theorems and Monte Carlo methods for the monomer dimer problem, inResearch Papers in Statistics: Festschrift for J. Neyman, F. N. David, ed. (Wiley, New York, 1966), pp. 125–146.Google Scholar
  13. 13.
    J. M. Hammersley, An improved lower bound for the multidimensional dimer problem,Proc. Camb. Phil. Soc. 64:455–463 (1968).Google Scholar
  14. 14.
    J. M. Hammersley, Calculation of lattice statistics, inProceedings of the Computational Physics Conference (Institute of Physics and the Physical Society, London, 1970), pp. 1–8.Google Scholar
  15. 15.
    J. M. Hammersley A. Feuerverger, A. Izenman, and K. Makani, Negative finding for the three-dimensional dimer problem,J. Math. Phys. 10(3):443–446 (1969).Google Scholar
  16. 16.
    J. M. Hammersley and V. V. Menon, A lower bound for the monomer-dimer problem,J. Inst. Math. Appl. 6:341–364 (1970).Google Scholar
  17. 17.
    O. J. Heilmann and E. H. Lieb, Theory of monomer-dimer systems,Commun. Math. Phys. 25:190–232 (1972).Google Scholar
  18. 18.
    M. R. Jerrum, Two-dimensional monomer-dimer systems are computationally intractable,J. Stat. Phys. 48:121–134 (1987).Google Scholar
  19. 19.
    M. R. Jerrum, An analysis of a Monte Carlo algorithm for estimating the permanent, inProceedings of the 3rd Conference on Integer Programming and Combinatorial Optimization (CORE, Louvain-la-Neuve, Belgium, 1993), pp. 171–182.Google Scholar
  20. 20.
    M. R. Jerrum and A. J. Sinclair, Approximating the permanent,SIAM J. Computing 18:1149–1178 (1989).Google Scholar
  21. 21.
    M. R. Jerrum and A. J. Sinclair, Polynomial-time approximation algorithms for the Ising model,SIAM J. Computing 22:1087–1116 (1993).Google Scholar
  22. 22.
    M. R. Jerrum and A. J. Sinclair, The Markov chain Monte Carlo method, inApproximation Algorithms for NP-hard Problems, D. Hochbaum, ed. (PWS Publishing, Boston, 1996), to appear.Google Scholar
  23. 23.
    M. R. Jerrum and U. V. Vazirani, A mildly exponential approximation algorithm for the permanent inProceedings of the 33rd IEEE Symposium on Foundations of Computer Science (1992), pp. 320–326.Google Scholar
  24. 24.
    R. Kannan, Markov chains and polynomial time algorithms, inProceeding of the 35th IEEE Conference on Foundations of Computer Science (1994), pp. 656–671.Google Scholar
  25. 25.
    N. Karmarkar, R. M. Karp, R. Lipton, L. Lovász, and M. Luby, A Monte Carlo algorithm for estimating the permanent,SIAM J. Computing 22:284–293 (1993).Google Scholar
  26. 26.
    R. M. Karp, M. Luby, and N. Madras, Monte-Carlo approximation algorithms for enumeration problems.J. Algorithms 10:429–448 (1989).Google Scholar
  27. 27.
    P. W. Kasteleyn, The statistics of dimers on a lattice I. The number of dimer arrangements on a quadratic lattice.Physica 27:1209–1225 (1961).Google Scholar
  28. 28.
    P. W. Kasteleyn, Dimer statistics and phase transitions,J. Math. Phys. 4:287–293 (1963).Google Scholar
  29. 29.
    P. W. Kasteleyn, Graph theory and crystal physics, inGraph Theory and Theoretical Physics, F. Harary, ed. (Academic Press, London, 1967), pp. 43–110.Google Scholar
  30. 30.
    C. Kenyon, D. Randall, and A. J. Sinclair, Matchings in lattice graphs, inProceedings of the 25th ACM Symposium on Theory of Computing (1993), pp. 738–746.Google Scholar
  31. 31.
    C. H. C. Little, D. G. Grant, and D. A. Holton, On defect-d matchings in graphs,Discrete Math. 13:41–54 (1975); Erratum,Discrete Math. 14:203 (1976).Google Scholar
  32. 32.
    M. Mihail and P. Winkler, On the number of Eulerian orientations of a graph, inProceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms (1992), pp. 138–145.Google Scholar
  33. 33.
    H. Minc,Permanents (Addison-Wesley, Reading, Massachusetts, 1978).Google Scholar
  34. 34.
    R. Motwani, Expanding graphs and the average-case analysis of algorithms for matchings and related problems, inProceedings of the 21st ACM Symposium on Theory of Computing (1989), pp. 550–561.Google Scholar
  35. 35.
    L. E. Rasmussen, Approximating the permanent: A simple approach,Random Structures Algorithms 5:349–361 (1994).Google Scholar
  36. 36.
    J. K. Roberts, Some properties of adsorbed films of oxygen on tungsten,Proc. R. Soc. Lond. A 152:464–480 (1935).Google Scholar
  37. 37.
    A. J. Sinclair, Improved bounds for mixing rates of Markov chains and multicommodity flow,Combinatorics Probability Computing 1:351–370 (1992).Google Scholar
  38. 38.
    A. J. Sinclair,Algorithms for Random Generation and Counting: A Markov Chain Approach (Birkhäuser, Boston, 1993).Google Scholar
  39. 39.
    H. N. V. Temperley and M. E. Fisher, Dimer problem in statistical mechanics—An exact result,Phil. Mag. 6:1061–1063 (1961).Google Scholar
  40. 40.
    L. G. Valiant, The complexity of computing the permanent,Theor. Comput. Sci. 8:189–201 (1979).Google Scholar
  41. 41.
    G. H. Wannier, Antiferromagnetism: The triangular Ising net,Phys. Rev. 79:357–364 (1650).Google Scholar
  42. 42.
    D. J. A. Welsh, The computational complexity of some classical problems from statistical physics, inDisorder in Physcial Systems, G. Grimmett and D. Welsh, eds. (Clarendon Press, Oxford, 1990), pp. 307–321.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Claire Kenyon
    • 1
  • Dana Randall
    • 2
  • Alistair Sinclair
    • 3
  1. 1.CNRSEcole Normale Supérieure de LyonFrance
  2. 2.Department of Computer SciencePrinceton UniversityPrinceton
  3. 3.Computer Science DivisionUniversity of California at BerkeleyBerkeley

Personalised recommendations