Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On position-space renormalization group approach to percolation

Abstract

In a position-space renormalization group (PSRG) approach to percolation one calculates the probabilityR(p,b) that a finite lattice of linear sizeb percolates, wherep is the occupation probability of a site or bond. A sequence of percolation thresholdsp c (b) is then estimated fromR(p c ,b)=p c (b) and extrapolated to the limitb→∞ to obtainp c =p c (∞). Recently, it was shown that for a certain spanning rule and boundary condition,R(p c ,∞)=R c is universal, and sincep c is not universal, the validity of PSRG approaches was questioned. We suggest that the equationR(p c ,b)=α, where α isany number in (0,1), provides a sequence ofp c (b)'s thatalways converges top c asb→∞. Thus, there is anenvelope from any point inside of which one can converge top c . However, the convergence is optimal if α=R c . By calculating the fractal dimension of the sample-spanning cluster atp c , we show that the same is true aboutany critical exponent of percolation that is calculated by a PSRG method. Thus PSRG methods are still a useful tool for investigating percolation properties of disordered systems.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. Stauffer and A. Aharony,Introduction to Percolation Theory, 2nd printing (Taylor and Francis, London, 1994).

  2. 2.

    M. Sahimi,Applications of Percolation Theory (Taylor and Francis, London, 1994).

  3. 3.

    R. M. Ziff,Phys. Rev. Lett. 69:2670 (1992);72:1942 (1994).

  4. 4.

    A. Aharony and J.-P. Hovi,Phys. Rev. Lett. 72:1941 (1994).

  5. 5.

    D. Stauffer, J. Adler, and A. Aharony,J. Phys. A: Math. Gen. 27:475 (1994).

  6. 6.

    U. Gropengiesser and D. Stauffer,Physica A 210:320 (1994).

  7. 7.

    A. P. Young and R. B. Stinchcombe,J. Phys. C: Solid State Phys. 8:L535 (1975).

  8. 8.

    A. B. Harris, T. C. Lubensky, W. K. Holcomb and C. Dasgupta,Phys. Rev. Lett. 35: 327 (1975).

  9. 9.

    B. Payandeh,Nuovo Cimento 3:1 (1980).

  10. 10.

    H. E. Stanley, P. J. Reynolds, S. Redner, and F. Family, InReal-Space Renormalization, T. W. Burkhardt and J. M. J. van Leeuwen, eds. (Springer, Berlin, 1982).

  11. 11.

    F. Family,AIP Conf. Proc. 109:33 (1984).

  12. 12.

    P. J. Reynolds, H. E. Stanley, and W. Klein,Phys. Rev. B 21:1223 (1980).

  13. 13.

    J. Bernasconi,Phys. Rev. B. 18:2185 (1978).

  14. 14.

    F. Family and P. J. Reynolds,Z. Phys. B 45:123 (1981).

Download references

Author information

Additional information

Communicated by D. Stauffer

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sahimi, M., Rassamdana, H. On position-space renormalization group approach to percolation. J Stat Phys 78, 1157–1164 (1995). https://doi.org/10.1007/BF02183708

Download citation

Key Words

  • Percolation
  • renormalization
  • universality