Journal of Statistical Physics

, Volume 78, Issue 1–2, pp 605–640 | Cite as

Lars Onsager: November 27, 1903–October 5, 1976

  • H. Christopher Longuet-Higgins
  • Michael E. Fisher


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1926 Zur Theorie der Electrolyte I.Phys. Z. 27: 388–392.Google Scholar
  2. 1927 Zur Theorie der Electrolyte. II.Phys. Z. 28: 277–298.Google Scholar
  3. 1927 Report on a revision of the conductivity theory.Trans. Faraday Soc. 23: 341–349, 356.Google Scholar
  4. 1928 Activity coefficients and mass-action law in electrolytes.J. Phys. Chem. 32: 1461–1466.Google Scholar
  5. 1929 Simultane irreversible processor. (Abstract).Beret. 18d. Skand. NatForsk-Møde, Copenhagen, pp. 440–441.Google Scholar
  6. 1931 Reciprocal relations in irreversible processes. I.Phys. Rev. 37: 405–426.Google Scholar
  7. 1931 Reciprocal relations in irreversible processes. II.Phys. Rev. 38: 2265–2279.Google Scholar
  8. 1932 With R. M. Fuoss. Irreversible processes in electrolytes.J. Phys. Chem. 36: 2689–2778.Google Scholar
  9. 1932 Viscosity and particle shape in colloid solutions (Abstract).Phys. Rev. 40: 1028.Google Scholar
  10. 1933 Theories of concentrated electrolytes.Chem. Rev. 13: 73–89.Google Scholar
  11. 1934 With N. N. T. Samaras. The surface tension of Debye-Hückel electrolytes.J. Chem. Phys. 2: 528–536.Google Scholar
  12. 1934 Deviations from Ohm's law in weak electrolytes.J. Chem. Phys. 2: 599–615.Google Scholar
  13. 1935 Solutions of the Mathieu equation of period 4π and certain related functions. Ph.D. thesis, Department of Chemistry, Yale University.Google Scholar
  14. 1936 Electric moments of molecules in liquids.J. Am. Chem. Soc. 58: 1486–1493.Google Scholar
  15. 1938 Initial recombination of ions.Phys. Rev. 54: 554–557.Google Scholar
  16. 1939 Electrostatic interaction of molecules.J. Phys. Chem. 43: 189–196.Google Scholar
  17. 1939 With W. H. Furry and R. Clark Jones. On the theory of isotope separation by thermal diffusion.Phys. Rev. 55: 1083–1095.Google Scholar
  18. 1939 Separation of gas (isotope) mixtures by irreversible processes. (Abstract).Phys. Rev. 55: 1136–1137.Google Scholar
  19. 1939 With W. W. Watson. Turbulence in convection in gases between concentric vertical cylinders.Phys. Rev. 56: 474–477.Google Scholar
  20. 1940 Separation of isotopes by thermal diffusion. (Abstract).Phys. Rev. 57: 562.Google Scholar
  21. 1942 Anisotropic solutions of colloids. (Abstract).Phys. Rev. 62: 558.Google Scholar
  22. 1942 Crystal statistics. (Abstract).Phys. Rev. 62: 559.Google Scholar
  23. 1944 Crystal statistics. I. A two-dimensional model with an order-disorder transition.Phys. Rev. 65: 117–149.Google Scholar
  24. 1945 Theories and problems of liquid diffusion.Ann. N.Y. Acad. Sci. 46: 241–265.Google Scholar
  25. 1945 The distribution of energy in turbulence. (Abstract).Phys. Rev. 68: 286.Google Scholar
  26. With. B. Kaufman. 1948 Transition points.Rep. Int. Conf. on Fundamental Particles and Low Temperatures, Cambridge, July 1946, vol. 2, p. 137. London: The Physical Society.Google Scholar
  27. With J. E. Robinson. 1948. De Haas-Van Alphen effect in zinc (Abstract).Phys. Rev. 74: 1235.Google Scholar
  28. 1949 Effects of shape on the interaction of colloidal particles.Ann. N.Y. Acad. Sci. 51: 627–659.Google Scholar
  29. With B. Kaufman. 1949. Crystal statistics. III. Short-range order in a binary Ising lattice.Phys. Rev. 76: 1244–1252.Google Scholar
  30. 1949 Statistical hydrodynamics.Nuovo Cim. Suppl. (9) 6: 279–287; see also 249, 261.Google Scholar
  31. With W. W. Watson and A. Zucker. 1949. Apparatus for isotope separation by thermal diffusion.Rev. Scient. Instrum. 20: 924–927.Google Scholar
  32. 1952 Interpretation of the de Haas-Van Alphen effect.Phil. Mag. (7) 43: 1006–1008.Google Scholar
  33. With L. J. Gosting. 1952. General theory for the Gouy diffusion method.J. Am. Chem. Soc. 74: 6066–6074.Google Scholar
  34. 1952Kinetic theory and statistical mechanics. Lecture notes of a course of the same title given at Yale University by Lars Onsager, compiled by Don E. Harrison, Jr. Unpublished manuscript in Kline Library, Yale University, New Haven.Google Scholar
  35. With S. Machlup. Fluctuations and irreversible processes.Phys. Rev. 91: 1505–1512. 1953Google Scholar
  36. With S. Machlup. Fluctuations and irreversible processes. II. Systems with kinetic eenergy.Phys. Rev. 91: 1512–1515. 1953.Google Scholar
  37. Diamagnetism in metals.Proc. Int. Conf. Theoretical Physics, Kyoto and tokyo, September 1953, pp. 669–675. Introductory talk [on liquid helium], pp. 877–880. Tokyo: Science Council of Japan. 1953Google Scholar
  38. With R. M. Fuoss. Conductance of strong electrolytes at finite dilutions.Proc. Natl. Acad. Sci. USA, 41: 274–283. 1955Google Scholar
  39. With O. Penrose. Bose-Einstein condensation and liquid helium.Phys. Rev. 104: 576–584. 1956Google Scholar
  40. With S. K. Kim. Wien effect in simple strong electrolytes.J. Phys. Chem. 61: 198–215. 1957Google Scholar
  41. With S. K. Kim. The relaxation effect in mixed strong electrolytes.J. Phys. Chem. 61: 215–229. 1957Google Scholar
  42. With R. M. Fuoss. Conductance of unassociated electrolytes.J. Phys. Chem. 61: 668–682. 1957Google Scholar
  43. With R. M. Fuoss, The kinetic term in electrolytic conductance.J. Phys. Chem. 62: 1339–1340. 1958Google Scholar
  44. With J. L. Lebowitz, Low temperature fluctuations.Proc. Fifth Int. Conf. Low Temperature Physics and Chemistry, Madison, Wisconsin, Aug. 1957, p. 119. Madison: University of Wisconsin Press. 1958Google Scholar
  45. Man-electron wave function. (Abstract).Bull. Am. Phys. Soc., Series II, 3: 146. 1958Google Scholar
  46. With M. Dupuis and R. Mazo. Surface-specific heat of an isotropic soilid at low temperatures.J. Chem. Phys. 33: 1452–1461. 1960Google Scholar
  47. With D. R. Whitman, M. Saunders, and H. E. Dubb. Proton magnetic resonance spectrum of propane.J. Chem. Phys. 32: 67–71. 1960Google Scholar
  48. With M. Dupuis. Electrical properties of ice.Re. Scu. Int. Fis. “Enrico Fermi,” Corso X, Varenna, 1959, pp. 294–315. Bologna: Nicolà Zanichelli (Supplement toNuovo Cimento). 1960Google Scholar
  49. Magnetic flux throgh a superconducting ring.Phys. Rev. Lett. 7: 50. 1961Google Scholar
  50. With R. M. Fuoss. Thermodynamic potentials of symmetrical electrolytes.Proc. Natl. Acad. Sci. USA, 47: 818–825. 1961Google Scholar
  51. Statistical mechanics course. (Lecture notes from L. Onsager's Statistical Mechanics, Yale University, taken by Robert Hill). Unpublished manuscript in Kline Memorial Library, Yale University, New Haven. 1961Google Scholar
  52. With R. M. Fuoss. The conductance of symmetrical electrolytes. I. Potential of total force.J. Phys. Chem. 66: 1722–1726. 1962Google Scholar
  53. The electricla properties of ice.vortex 23: 138–141. 1962Google Scholar
  54. With M. Dupuis, The electrical properties of ice.Electrolytes, Proc. Int. Symp. Trieste, Yugoslavia, 1959, pp. 27–46. Oxford: Pergamon Pres. 1962Google Scholar
  55. With R. M. Fuoss. The conductance of symmetrical electrolytes. II. The relaxation field.J. Phys. Chem. 67: 621–628. 1963Google Scholar
  56. With R. M. Fuoss. The conductance of symmetrical electrolytes. III. Electrophoresis.J. Phys. Chem. 67: 628–632. 1963Google Scholar
  57. With L. K. Runnels. Mechanism for self-diffusion in ice.Proc. Natl. Acad. Sci. USA, 50: 208–210. 1963Google Scholar
  58. Heolium II.Proc. Symp. on the Many-body Problem, Stevens Institute of Technology, Hoboken, New Jersey, January 28–29, 1957, pp. 457–464. New York: Interscience. 1963Google Scholar
  59. A correction to the Poisson-Boltzmann equation for unsymmetrical electrolytes.J. Am. Chem. Soc. 86: 3421–3423. 1964Google Scholar
  60. With R. M. Fuoss. The conductance of symmetrical electrolytes. IV. Hydrodynamic and osmotic terms in the relaxation field.J. Phys. Chem. 68: 1–8. 1964Google Scholar
  61. Electrons in liquids. In:Modern quantum chemistry. Istanbul Lectures 1964, O. Sinoglu ed., pt. 2, pp. 123–128. New York: Academic Press. 1965Google Scholar
  62. Electrons in metals. In:Modern quantum chemistry. Istanbul Lectures 1964, O. Sinanoglu ed. pt. 2, pp. 265–278. New York: Academic Press. 1965Google Scholar
  63. With C. T. Liu. Zur Theorie des Wieneffekts in schwachen Elektrolyten.Z. Phys. Chem. (Leipzig) 228: 428–432. 1965Google Scholar
  64. With R. M. Fuoss and J. F. Skinner. The conductance of symmetrical electrolytes. V. The conductance equation.J. Phys. Chem. 69: 2581–2594. 1965Google Scholar
  65. With L. Mittag and M. J. Stephen. Integrals in the theory of electron correlations.Ann. Phys. (Leipzig) 7. Folge 18: 71–77. 1966Google Scholar
  66. Ferroelectricity of ice?Proc. Symp. on Ferroelectricity, Warren, Michigan, Sept. 1966, ed. Edward F. Weller, pp. 16–19. Amsterdam: Elsevier.Google Scholar
  67. Thermodynamics and some molecular aspects of biology. In:The neurosciences. A study program, G. C. Quarton et al. eds., p. 75. New York: The Rockefeller University Press. 1967Google Scholar
  68. With S. W. Provencher. Relaxation effects in associating electrolytes.J. Am. Chem. Soc. 90: 3134–3140. 1968Google Scholar
  69. The motion of ions: principles and concepts.Les Prix Nobel en 1968, pp. 169–182. Stockholm: Nordstedt & Söner. Also inScience 166: 1359–1364. 1969Google Scholar
  70. With L. K. Runnels. Diffusion and relaxation phenomena in ice.J. Chem. Phys. 50: 1089–1103. 1969Google Scholar
  71. Protonic semiconductors. In:Physics of ice, Proc. 3rd Int. Symp., Munich, 1968, Nikolaus Riehl et al. eds., pp. 363–368. New York: Plenum Press. 1969Google Scholar
  72. Possible mehanisms of ion transit. Physical principles of biological membranes. In:Proc. Coral Gables Conf., 1968, F. Snell et al. eds., p. 137. New York: Gordon and Breach. 1970Google Scholar
  73. The Ising model in two dimensions. In:Critical phenomena in alloys, magnets and superconductors (Report on the Battelle Symposium), eds. R. E. Mills et al., pp. 3–12. New York: McGraw-Hill. 1971Google Scholar
  74. Interpretation of dynamic and equilibrium properties of water. In:Structure of water and aqueous solutions, Proc. Int. Symp. Marburg, 1973, ed. Werner Luck, pp. 1–7. Weinheim: Verlag Chemie. 1974Google Scholar
  75. Life in the early days, pp. 1–14; 1974Google Scholar
  76. with Edmond Drauglis. The effect of wall charge on the capillary rise of electrolytes, pp. 167–200; 1974Google Scholar
  77. with Tag Young Moon. Surface specific heat of crystals. I., pp. 227–279. In:Quantum statistical mechanics in the natural sciences, Coral Gables Conf., 1973, eds. S. L. Mintz and S. M. Widmayer. New York: Plenum Press. 1974Google Scholar
  78. With A. M. Stewart, Asymptotic forms for luminescent intensity due to donor-acceptor pair recombination.J. Phys. C. 7: 645–648. 1974.Google Scholar
  79. With Mou-Shan Chen, Jill C. Bonner, and J. F. Nagle. Hopping of ions in ice.J. Chem. Phys. 60: 405–419. 1974Google Scholar
  80. With J. McCauley, Jr. Electrons and vortex lines in He II. I. Brownian motion theory of capture and escape.J. Phys. A 8: 203–213. 1975Google Scholar
  81. With J. McCauley, Jr. Electrons and vortex lines in He II. II. Theoretical analysis of capture and release experiments.J. Phys. A 8: 882–890. 1975Google Scholar
  82. With Shoon K. Kim. The integral representation of the relaxation effects in mixed strong electrolytes in the limiting law region.J. Phys. Chem. 81: 1211–1212. 1977Google Scholar
  83. With Mou-Shan Chen. The generalized conductance equation.J. Phys. Chem. 81: 2017–2021. 1977Google Scholar
  84. With J. B. Hubbard, W. M. van Beek, and M. Mandel. Kinetic polarization deficiency in electrolyte solutions.Proc. Natl. Acad. Sci. USA, 74: 401–404. 1977Google Scholar
  85. With J. Hubbard. Dielectric dispersion and dielectric friction in electrolyte solutions.J. Chem. Phys. 67: 4850–4857. 1977Google Scholar
  86. With David L. Staebler and Sergio Mascarenhas. Electrical effects during condensation and phase transitions of ice.J. Chem. Phys. 68: 3823–3828. 1978Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • H. Christopher Longuet-Higgins
    • 1
  • Michael E. Fisher
    • 2
  1. 1.Centre for Research on Perception and Cognition, Laboratory of Experimental PsychologyUniversity of SussexBrightonUK
  2. 2.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations