Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Equilibrium concentration of point defects in crystalline4He at O K

  • 164 Accesses

  • 9 Citations

Abstract

We calculate the concentrations of vacancies and intersitials in the ground state of a Bose solid which models4He. Because ground-state boson wave functions are nodeless, their probability densities correspond to classical Boltzmann factors, and properties of Bose solids, such as the concentration of vacancies and interstitials, can be calculated using classical statistical mechanics. We model the ground-state wave function of4He with the product (Jastrow) form that corresponds to a classical 1/r b pair potential, and use a quasiharmonic approximation to calculate the concentrations of vacancies and interstitials in an fcc lattice with this potential. We find that the fractional concentration of vacancies at the melting point is 1.60×10−5 for 1/r 9 and 6.36×10−6 for 1/r 6, while the interstitial fractional concentrations are 1.32×10−3 and 1.08×10−5, respectively; the defect concentrations decrease by 7–16 orders of magnitude when the crystal density increases by 50%. At the same density, and with the same 1/r 9 potential, the concentration of vacancies in an hcp lattice is essentially the same as in an fcc lattice, but the interstitial concentration is much lower, apparently because the fcc lattice contains a more favorable split-interstitial site than does hcp. Therefore, our fcc vacancy results should be directly relevant for (hcp)4He, providing what we think is a lower bound on the vacancy concentration, while the interstitial concentration in4He is probably much lower than our results.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    O. Penrose and L. Onsager, Bose-Einstein condensation and liquid helium,Phys. Rev. 104:576 (1956).

  2. 2.

    Y. Imry and M. Schwartz, On the possibility of Bose-Einstein condensation in a solid,J. Low Temp. Phys. 21:543 (1975).

  3. 3.

    A. F. Andreev and I. M. Lifshitz, Quantum theory of defects in crystals,Sov. Phys. JETP 29:1107 (1969).

  4. 4.

    G. V. Chester, Speculations on Bose-Einstein condensation and quantum crystals,Phys. Rev A 2:256 (1970).

  5. 5.

    A. J. Leggett, Can a solid be “Superfluid”?Phys. Rev. Lett. 25:1543 (1970).

  6. 6.

    R. A. Guyer, Superfluidity in quantum crystals.,Phys. Rev. Lett. 26:174 (1971).

  7. 7.

    A. Widom and D. P. Locke, Bose-Einstein condensation in solid4He,J. Low Temp. Phys. 23:335 (1976).

  8. 8.

    M. W. Meisel, Supersolid4He: An overview of past searches and future possibilities,Physica B 178:121 (1992).

  9. 9.

    J. P. Hansen and D. Levesque, Ground state of solid helium-4 and- 3,Phys. Rev. 165:293 (1968).

  10. 10.

    J. P. Hansen and E. L. Pollock, Ground state properties of solid helium-4 and- 3,Phys. Rev. A 5:2651 (1972).

  11. 11.

    S. A. Vitiello, K. J. Runge, G. V. Chester, and M. H. Kalos, Shadow wave-function variational calculations of crystalline and liquid phases of4He,Phys. Rev. B 42:228 (1990).

  12. 12.

    S. Moroni and G. Senatore, Theory of freezing for quantum fluids: Crystallization of4He at zero temperature,Europhys. Lett. 16:373 (1991).

  13. 13.

    S. Vitiello, K. Runge, and M. H. Kalos, Variational calculations for solid and liquid4He with a “shadow” wave function,Phys. Rev. Lett. 60:1970 (1988).

  14. 14.

    P. A. Varotsos and K. D. Alexopoulos,Thermodynamics of Point Defects and Their Relation with Bulk Properties, (Elsevier, New York, 1986), pp. 33–52.

  15. 15.

    R. K. Pathria,Statistical Mechanics (Pergamon, New York, 1972), p. 75.

  16. 16.

    S. A. Vitiello and K. E. Schmidt, Optimization of4He wave functions for the liquid and solid phases,Phys. Rev. B 46:5442 (1992).

  17. 17.

    W. G. Hoover, S. G. Gray, and K. W., Johnson, Thermodynamic properties of the fluid and solid phases for inverse power potentials.J. Chem. Phys. 55:1128 (1971).

  18. 18.

    A. L. Fetter and J. D. Walecka,Theoretical Mechanics of Particles and Continua (McGraw-Hill, New York, 1980), pp. 86–91.

  19. 19.

    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical Recipes in C, 2nd ed. (Cambridge University Press, New York, 1992).

  20. 20.

    W. G. Hoover, D. A. Young, and R. Grover, Statistical mechanics of phase diagrams. I. Inverse power potentials and the close-packed to body-centered cubic transition.J. Chem. Phys. 56:2207 (1972).

  21. 21.

    B. B. Laird and A. D. J. Haymet, Phase diagram for the inverse sixth power potential system from molecular dynamics computer simulation,Mol. Phys. 75:71 (1992).

  22. 22.

    C. N. Yang, Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors,Rev. Mod. Phys. 34:694 (1962).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hodgdon, J.A., Stillinger, F.H. Equilibrium concentration of point defects in crystalline4He at O K. J Stat Phys 78, 117–134 (1995). https://doi.org/10.1007/BF02183341

Download citation

Key Words

  • Vacancies
  • interstitials
  • solid helium