Advertisement

Journal of Statistical Physics

, Volume 77, Issue 5–6, pp 1027–1037 | Cite as

On the connection of the formulas for entropy and stationary distribution

  • Y. Arkhipov
  • A. Klar
  • V. Vedenyapin
Articles

Abstract

As is well known in statistical physics, the stationary distribution can be obtained by maximizing entropy. We show how one can reconstruct the formula for entropy knowing the formula for the stationary distribution. A general case is discussed and some concrete physical examples are considered.

Key Words

Entropy stationary distribution generalized dual to Gibbs' lemma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1975).Google Scholar
  2. 2.
    D. Bernardin, Global invariants and equilibrium states in lattice gases,J. Stat. Phys. 68(3/4) (1992).Google Scholar
  3. 3.
    H. Cabannes, Global solution of the discrete Boltzmann equation with multiple collisions,Eur. J. Mech. B/Fluids 1992(4):415.Google Scholar
  4. 4.
    K. M. Case and P. Zweifel,Linear Transport Theory (Addison-Wesley, 1967).Google Scholar
  5. 5.
    S. K. Godunov and U. M. Sultangazin, On discrete models of the kinetic Boltzmann equation,Russ. Math. Surv. 26(3):1–6 (1971).Google Scholar
  6. 6.
    H. P. MacKean, Entropy is the only increasing functional of Kac's gas,Z. Wahrsch. 2:167 (1963).Google Scholar
  7. 7.
    Y. H. Qian, D. d'Humières, and P. Lallemand, Diffusion simulation with a deterministic one-dimensional lattice gas model,J. Stat. Phys. 68(3/4) (1992).Google Scholar
  8. 8.
    V. Vedenyapin, Differential forms in spaces without a norm. A theorem on the uniqueness of Boltzmann'sH-function,Russ. Math. Surv. 43(1):193 (1988).Google Scholar
  9. 9.
    L. Waldmann, Transporterscheinungen in Gasen von mittlerem Druck, inHandbuch der Physik, Vol. 12 (Springer, Berlin, 1958), p. 295.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Y. Arkhipov
    • 1
  • A. Klar
    • 2
  • V. Vedenyapin
    • 1
  1. 1.Keldish Institute for Applied MathematicsRussian Academy of ScienceMoscowRussia
  2. 2.Fachbereich MathematikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations