Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nitrogen cycling in a15N-fertilized bean (Phaseolus vulgaris L.) crop

Ciclo del nitrógeno en cultivo de frijol (Phaseolus vulgaris L.) fertilizado con15N

  • 38 Accesses

  • 2 Citations

Abstract

To increase our understanding of the fate of applied nitrogen inPhaseolus vulgaris crops grown under tropical conditions,15N-labelled urea was applied to bean crops and followed for three consecutive cropping periods. Each crop received 100 kg urea-N ha−1 and 41 kg KCl−K ha−1. At the end of each period we estimated each crop's recovery of the added nitrogen, the residual effects of nitrogen from the previous cropping period, the distribution of nitrogen in the soil profile, and leaching losses of nitrogen.

In addition, to evaluate potential effects of added phosphorus on nitrogen cycling in this crop, beans were treated at planting with either 35 kg rock-phosphate-P, 35 kg superphosphate-P, or 0 kg P ha−1.

Results showed that 31.2% of the nitrogen in the first crop was derived from the applied urea, which represents a nitrogen utilization efficiency of 38.5%. 6.2% of the nitrogen in the second crop was derived from fertilizer applied to the first crop, and 1.4% of the nitrogen in the third crop. Nitrogen utilization efficiencies for these two crops, with respect to the nitrogen applied to the first crop, were 4.6 and 1.2%, respectively. In total, the three crops recovered 44.3% of the nitrogen applied to the first crop. The remainder of the nitrogen was either still in the soil profile or had been lost by leaching, volatilization or denitrification.15N enrichment of mineral-N(NO3+NH4) suggests that at the end of the second crop, the pulse of fertilizer applied to the first crop had probably passed the 120 cm depth.15N enrichment of organic-N suggests that root activity of beans and weeds transported nitrogen to 90–120 cm (or deeper).

We could account for 109 kg fertilizer-N ha−1 in harvested biomass, crop residue, and soil at the end of the first cropping period. This indicates an experimental error of about 10% if no nitrogen was lost by volatilization, denitrification, or leaching below 120 cm. At the end of the second and third crops, 76 and 80 kg N ha−1, respectively, could be accounted for, suggesting that 20 to 25% of the applied-N was lost from the system over a 2-crop period. The two types of added phosphorus did not significantly differ in their effects on bean yields.

Resumen

Con el fin de aumentar la compresión del destino del nitrógeno aplicado aPhaseolus vulgaris bajo condiciones tropicales, se aplicó úrea marcada con15N y se siguió la marcha del experimento por tres períodos de cultivo sucesivos. Cada cultivo recibió 100 kg N ha−1 en forma de úrea y 41 kg K ha−1 en forma de KCl. Al final de cada período se estimó la recuperción del nitrógeno añadido, los efectos residuales del nitrógeno aplicado en el período anterior, la distribución del nitrógeno en el perfil del suelo y las pérdidas por lixiviación. Adicionalmente, para evaluar los effectos del fósforo añadido sobre el ciclo del nitrógeno se fertilizó el cultivo con 35 kg P en forma de roca fosfatada ha−1 o con 35 kg P como superfosfato ha−1 y un tercer experimento sin P como control.

Los resultados mostraron que el 31,2% del nitrógeno en el primer cultivo provenía de la úrea aplicada, lo cual representa una eficiencia de utilización de 38,5%. En los dos períodos subsiguientes el 6,2% y el 1,4% del nitrógeno provenía del fertilizante anteriormente aplicado, respectivamente. Las eficiencias de utilización fueron en estos casos de 4,6 y 1,2 porciento respectivamente. En total los tres cultivos recuperaron 44,3% del nitrógeno aplicado al primero. El nitrógeno restante estaba en el suelo a había sido perdido por lixiviación, volatilización o desnitrificación.

El aumento en15N en el nitrógeno mineral (NH4+NO3) indicó que al fin del segundo período de cultivo, el frente de nitrógeno aplicado había ya pasado los 120 cm de profundidad. El aumento en15N en materia orgánica indicó que la actividad de las raices del cultivo y las malezas transportó e incorporó el nitrógeno a 90–120 cm y mas.

Podemos calcular que del total aplicado como fertilizante, 109 kg N ha−1 se hallaban en la biomasa cosechada, en los residuos de cosecha y en el suelo al final del primer período de cultivo. Si se considera que no hubo pérdidas por lixiviación, volatilización o desnitrificación, nuestro error experimental sería de un 10%. El mismo cálculo para el segundo y el tercer períodos de cultivo dió 76 kg N ha−1 y 80 kg N ha−1 respectivamente, indicando asi pérdidas de 20 a, 25% en los dos primeros años de cultivo. No se observaron diferencias entre las dos fuentes diferentes de fósforo.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Bremner J M 1965 Total nitrogen.In Black C A (Ed.). Methods of Soil Analysis, Part 2, pp 771–1149. Madison, Wisconsin: Am. Soc. Agron.

  2. 2

    Bremner J M and Keeney D R 1966 Determination of isotope ratio analysis of different forms of nitrogen in soils. 3. Exchangeable ammonium, nitrate and nitrite by extraction distillation methods. Soil Sci. Soc. Am. Proc. 30, 577–582.

  3. 3

    Burford J R, Dowdell R J and Webster C P 1978 The fate of fertilizer nitrogen applied to permanent grassland: lysimeter studies.In Letcombe Laboratory, Annual Report. pp 46–48. Wantage, U. K.: Letcombe Laboratory.

  4. 4

    Burford J R, Dowdell R J and Crees R 1978 Crop uptake and soil immobilization of fertilizer nitrogen after direct drilling and ploughing.In Letcombe Laboratory, Annual Report, pp 48–50. Wantage, U.K.: Letcombe Laboratory.

  5. 5

    IAEA 1980 Proceedings of a Seminar on Isotope Techniques in Studies of the Useful Conservation and the Pollutant Potential of Agricultural Nitrogen Residues. IAEA Special Report 48. Vienna: International Atomic Energy Agency. 29 p.

  6. 6

    Reichardt K, Grohmann F, Libardi P L and Queiroz S V 1976 Spatial Variability of Physical Properties of a Tropical Soil. II. Soil Water Retention Curves and Hydraulic Conductivity. CENA Report BT-004. Piracicaba, Brazil: Centro de Energia Nuclear na Agricultura. 24 p.

  7. 7

    Strebel O, Grimme H, Reniger M and Flaige H 1980 Field study with nitrogen-15 of soil and fertilizer nitrate uptake and water withdrawal by wheat. Soil Sci. 130, 205–211.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Libardi, P.L., Victoria, R.L., Reichardt, K. et al. Nitrogen cycling in a15N-fertilized bean (Phaseolus vulgaris L.) crop. Plant Soil 67, 193–208 (1982). https://doi.org/10.1007/BF02182767

Download citation

Key words

  • Beans
  • Brasil
  • Crop N-recovery
  • K-fertilizer
  • N-cycling
  • N-fertilizer
  • 15-N
  • Pfertilizer
  • Urea