Advertisement

Journal of Applied Phycology

, Volume 5, Issue 4, pp 425–435 | Cite as

Chemical composition ofSpirulina and eukaryotic algae food products marketed in Spain

  • J. J. Ortega-Calvo
  • C. Mazuelos
  • B. Hermosin
  • C. Saiz-Jimenez
Article

Abstract

ThreeSpirulina and five eukaryotic algal food products available in the Spanish market have been extensively studied. Results are given for their gross chemical composition (water content, crude protein, total carbohydrates, lipids, nucleic acids etc.) and contents of macrominerals, trace elements, fatty acids, amino acids and neutral sugars. The results are compared to those from other studies on natural or laboratory-produced populations. An overall nutritional and toxicological evaluation of these products is included.

Key words

Spirulina algae nutrition heavy metals fatty acids sugars amino acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, EW (1988) Micro-algae for human and animal consumption. In Borowitzka MA, Borowitzka LJ (eds), Microalgal Biotechnology. Cambridge U.P., Cambridge, 222–256.Google Scholar
  2. Becker EW, Vekataraman LV (1982) Biotechnology and exploitation of algae — the Indian approach. German Agency for Technical Cooperation, Eschborn.Google Scholar
  3. Black WAP (1949) Seasonal variation in chemical composition of some of the littoral seaweeds common to Scotland. Part II.Fucus serratus, Fucus vesiculosus, Fucus spiralis andPelvetia caniculata. J. Soc. Chem. Ind. 68: 183–189.Google Scholar
  4. Casu B, Naggi A, Vercellotti JR (1980) Polisaccaridi di riserva dellaSpirulina platensis: estrazione e caratterizzazione. In Materassi E (ed.), Prospettive della Coltura diSpirulina in Italia. CNR, Rome, 145–153.Google Scholar
  5. Chapman VJ, Chapman DJ (1980) Seaweeds and their Uses. Chapman and Hall, London. 334 pp.Google Scholar
  6. C.I.I. (1969) Mèthodes de rèference pour la dètermination des èlèments minèraux daus les vègètaux. Agron. Trop. 24: 827–835.Google Scholar
  7. Cohen Z, Vonshak A, Richmond A (1987) Fatty acid composition ofSpirulina strains grown under various environments. Phytochemistry 26: 2255–2258.Google Scholar
  8. Cuthbertson WFJ (1989) What is a healthy food? Food Chem. 33: 53–80.Google Scholar
  9. Czarnecki SK, Kritchevski D (1980) Trace elements. In Alfin-Slater RB, Kritchevski D (eds), Nutrition and the Adult-Micronutrients. Human Nutrition, vol. 3B. Plenum, New York, 319–350.Google Scholar
  10. Diab MA, Podojil M, Wurst M, Prokes B (1976) Content of fatty acids ofChlorella kessleri in a deep tank fermentation. Folia Microbiol. 21: 294–296.Google Scholar
  11. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.Google Scholar
  12. Hayashi K, Kida S, Kato K, Yamada H (1974) Component fatty acids of acetone-soluble lipids of 17 species of marine benthic algae. Bull. Japan Soc. Sci. Fish. 40: 609–617.Google Scholar
  13. Ito K, Nori K (1989) Seaweed: chemical composition and potential food uses. Food Rev. Int. 5: 101–144.Google Scholar
  14. Jassby A (1988a)Spirulina: a model for microalgae as human food. In Lembi CA, Waaland JR (eds), Algae and Human Affairs. Cambridge U.P., Cambridge, 149–179.Google Scholar
  15. Jassby A (1988b) Some public health aspects of microalgal products. In Lembi CA, Waaland JR (eds), Algae and Human Affairs. Cambridge U.P., Cambridge, 181–201.Google Scholar
  16. Johnson PE, Shubert LE (1986a) Availability of iron to rats fromSpirulina, a blue-green alga. Nutr. Res. 6: 85–94.Google Scholar
  17. Johnson PE, Shubert LE (1986b) Accumulation of mercury and other elements bySpirulina (Cyanophyceae). Nutr. Rep. Int. 34: 1063–1070.Google Scholar
  18. Kyle D (1989) Market applications for microalgae. J. Am. Oil Chem. Soc. 66: 648–653.Google Scholar
  19. Lacquerbe B, Busson F, Maigrot M (1970) Sur la composition en èlèments minèraux de deux cyanophycèes,Spirulina platensis (Gom.) Geitler etS. Geitleri J. de Toni. C. R. Acad. Sci. Paris 270: 2130–2132.Google Scholar
  20. Lundberg LO (1954) Autoxidation. J. Am. Oil Chem. Soc. 31: 523–528.Google Scholar
  21. Mackinney G (1941) Absorption of light by chlorophyll solutions. J. biol. Chem. 140: 315–322.Google Scholar
  22. Mannino S, Beneli TG (1980) Constituenti minerali di biomasse diSpirulina maxima. In Materassi R (ed.), Prospettive della coltura diSpirulina in Italia. CNR, Rome, 131–135.Google Scholar
  23. Milner HW (1953) The chemical composition of algae. In Burlew JS (ed.), Algal Culture — from Laboratory to Pilot Plant. Carnegie Inst., Washington, 285–345.Google Scholar
  24. Morgan KC, Wright JLC, Simpson FJ (1980) Review of chemical constituents of the red algaPalmaria palmata (Dulse). Econ. Bot. 34: 27–50.Google Scholar
  25. Nichols BW (1965) Light induced changes in the lipids ofChlorella vulgaris. Biochim. Biophys. Acta 106: 274–279.Google Scholar
  26. PAG (‘Protein-Calorie Advisory Group’) (1975) PAGad hoc working group meeting on clinical evaluation and acceptable nucleic acid levels of SCP for human consumption. PAG Bull. 5: 17–26.Google Scholar
  27. Paoletti C, Vincenzini M, Bocci F, Materassi R (1980) Composizione biochimica generale delle biomasse diSpirulina platensis eS. maxima. In Materassi R (ed.), Prospettive della Coltura diSpirulina in Italia. CNR, Rome, 111–125.Google Scholar
  28. Payer HD, Runkel KH (1978) Environmental pollutants in freshwater algae from open-air mass cultures. Arch. Hydrobiol. Beih. Ergben. Limnol. 11: 184–198.Google Scholar
  29. Perez R, Durand P, Kaas R, Barbaroux O, Barbier V, Vinot C, Bourgeay-Causse M, Leclerq M, Moigne JY (1988)Undaria pinnatifida on the french coasts. Cultivation method. Biochemical composition of the sporophyte and the gametophyte. In Stadler T, Mollion J, Verdus M-C, Karamanos Y, Morvan H, Christiaen D (eds), Algal Biotechnology. Elsevier, London, 315–327.Google Scholar
  30. Podojil M, Livanski K, Prokes B, Wurst M (1978) Fatty acids in green algae cultivated on a pilot-plant scale. Folia Microbiol. 23: 444–448.Google Scholar
  31. Pohl P., Zurheide F. (1979) Fatty acids and lipids of marine algae and the control of their biosynthesis by environmental factors. In Hoppe HA, Leving T, Tanaka Y (eds), Marine Algae in Pharmaceutical Science. Walter de Gruyter, Berlin, 473–523.Google Scholar
  32. Quillet M (1975) Recherche sur les substances glucidiques elaborès par les spirulines. Ann. Nutr. Alim. 29: 553–561.Google Scholar
  33. Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy-metal pollution. Biol. Rev. 56: 99–151.Google Scholar
  34. Richmond A (1986) Microalgae of economic potential. In Richmond A (ed.), CRC Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, 199–243.Google Scholar
  35. Santillan C (1982) Mass production ofSpirulina. Experientia 38: 40–43.Google Scholar
  36. Sato S (1975) Fatty acid composition of lipids in some species of marine algae. Bull. Japan Soc. Sci. Fish. 41: 1177–1183.Google Scholar
  37. Shekharam KM, Venkataraman LV, Salimath PV (1987) Carbohydrate composition and characterization of two unusual sugars from the blue-green algae,Spirulina platensis. Phytochemistry 26: 2267–2269.Google Scholar
  38. Smillie RM, Krotkov G. (1960) The estimation of nucleic acids in some algae and higher plants. Can. J. Bot. 38: 31–49.Google Scholar
  39. Soeder CJ (1986) An historical outline of applied algology. In Richmond A (ed.), CRC Handbook of Microalgal mass culture. CRC Press, Boca Raton, Florida, 25–43.Google Scholar
  40. Soong P (1980) Production and development ofChlorella andSpirulina in Taiwan. In Shelef G, Soeder CJ (eds), Algae Biomass. Elsevier, Amsterdam, 97–113.Google Scholar
  41. Takagi T, Asahi M, Itabashi Y (1985) Fatty acid composition of twelve algae from Japanese waters. J. Japan Oil Chem. Soc. 34: 12–16.Google Scholar
  42. Usuki R (1989) Oxidative deterioration of commercial fried foods containing chlorophylls. J. Jap. Soc. Food Sci. Tech. 36: 475–478.Google Scholar
  43. Vonshak A, Guy R, Guy M (1988) The response of the filamentous cyanobacteriumSpirulina platensis to salt stress. Arch. Microbiol. 150: 417–420.Google Scholar
  44. Whitton BA (1984) Algae as monitors of heavy metals in freshwaters. In Shubert LE (ed.), Algae as Ecological Indicators. Academic Press, London, 257–280.Google Scholar
  45. Yamamoto T, Otsuka Y, Okazaki M (1979) The distribution of chemical elements in algae. in Hoppe HA, Levring T, Tanaka Y (eds), Marine Algae in Pharmaceutical Science. Walter de Gruyter, Berlin, 569–607.Google Scholar
  46. Yannai S, Mokadi S, Sachs K, Kantorowitz B, Berk Z (1980) Certain contaminants in algae and in animals fed algaec-ontaining diets, and secondary toxicity of the algae. In Shelef G, Soeder CJ (eds), Algae Biomass. Elsevier, Amsterdam, 757–766.Google Scholar
  47. Zoelner N, Kirsch K (1962) Microdetermination of lipids by the sulphophosphovanillin reaction. Z. Ges. exp. Med. 135: 545–561.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • J. J. Ortega-Calvo
    • 1
  • C. Mazuelos
    • 1
  • B. Hermosin
    • 1
  • C. Saiz-Jimenez
    • 1
  1. 1.Instituto de Recursos Naturales y AgrobiologiaSevillaSpain

Personalised recommendations