Journal of Applied Phycology

, Volume 5, Issue 5, pp 505–516 | Cite as

Changes in yield ofin-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring

  • Roswitha Conrad
  • Claudia Büchel
  • Christian Wilhelm
  • Wafa Arsalane
  • Claire Berkaloff
  • Jean-Claude Duval
Article

Abstract

Triazines and derivatives of phenylurea, which are often found in outdoor water samples, induce specific changes in the yield of thein-vivo chlorophyll α-fluorescence of PSII. These changes are correlated quantitatively with the concentration of the herbicides and can therefore be used to set-up a low-price monitor system. In order to detect selectively the herbicide-sensitive part of the fluorescence emission a pulse amplitude modulated fluorimeter was used. The bioassay system was optimised with respect to test organism, growing and measuring conditions. The relationship between fluorescence yield and herbicide concentrations were experimentally determined for the triazines atrazine and simazine and the phenylurea herbicide DCMU and mathematically fitted (r=0.99). The I50-values were 0.9 µM for DCMU, 2.2 µM for simazine and 3.3 µM for atrazine. The detection limit of about 0.5 µM clearly shows that the sensitivity of this bioassay system is too low to reach the requirements of the drinking water regulation. However, due to its insensitivity against complex water matrices, there is good hope to combine this fluorometric bioassay with a potent herbicide preconcentration method like a solid-phase extraction procedure.

Key words

fluorescence bioassay PSII herbicides algae triazines phenylureas 

Abbreviations

Chl

chlorophyll

DCMU

dichlorophenyldimethylurea

F

fluorescence

Fm

maximal fluorescence

Fo

minimal fluorescence

Fo

variable fluorescence

GC

gas chromatography

HPLC

High performance liquid chromatography

MS

mass spectroscopy

PAM

pulse-amplitude-modulated fluorometer

PSII

photosystem II

qN

non-photochemical quenching

I50

concentration required for 50% inhibition of electron transport

CCCP

carbonyl cyanide m-chlorophenylhydrazon

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bringmann G, Kühn R (1978) Grenzwerte der Schadwirkung wassergefährdender Stoffe gegen Blaualgen (Microcystis aeruginosa) und Grünalgen (Scenedesmus quadricauda) im Zellvermehrungshemmtest. Vom Wasser 50: 45–60.Google Scholar
  2. Büchel C, Wilhelm C (1993)In-vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspectives. J. Photochem. Photobiol. (in press).Google Scholar
  3. Buman RA, Gealy DR, Fuerst EP (1992a) Relationship between temperature and triazinone herbicide activity. I. Herbicide binding to thylakoid membranes. Pest. Biochem. Physiol. 43: 22–28.Google Scholar
  4. Buman RA, Gealy DR, Fuerst EP (1992b) Relationship between temperature and triazinone herbicide activity. II. Herbicide absorption by protoplasts and herbicide inhibition of photosynthetic electron transport. Pest. Biochem. Physiol. 43: 29–36.Google Scholar
  5. Chow WS, Hope AB, Anderson JM (1990) A reassesment of the use of herbicide binding to measure photosystem II reaction centres in plant thylakoids. Photosynth. Res. 24: 109–113.Google Scholar
  6. Derenne S, Largeau C, Berkaloff C, Rousseau B, Wilhelm C, Hatcher PG (1992) Non-hydrolysable macromolecular constitutents from outer walls ofChlorella fusca andNanochlorum eurcaryotum. Phytochemistry 31: 1923–1929.Google Scholar
  7. Draber W, Kluth JF, Tietjen K, Trebst A (1991) Herbizide in der Photo syntheseforschung. Angew. Chem. 103: 1650–1663.Google Scholar
  8. Fedtke C (1982) Biochemistry and physiology of herbicide action. Springer Verlag, Berlin, Heidelberg, 23–49.Google Scholar
  9. Govindjee, Satoh K (1986) Fluorescence properties of chlorophyll b- and chlorophyll c-containing algae. In: Govindjee, Amesz J (eds), Light emission by plants and bacteria. Academic Press, New York, 479–533.Google Scholar
  10. Grandet M, Weil, L Quentin K-E (1988) Gaschromatographische Bestimmung der Triazin-Herbizide und ihrer Metabolite in Wasser. Z. Wasser-Abwasser-Forsch. 21: 21–24.Google Scholar
  11. Haddad G, Ponte-Freitas A, Ravanel P, Tissut M (1992) Leaf penetration and foliar transfer of isoproturon, from a stirred medium to the D1-protein target. Plant Physiol. Biochem. 30: 173–180.Google Scholar
  12. Hein D, Lowis J, Münzinger A (1991) Erfahrungen mit dem Leuchtbakterientest bei der Überwachung kommunaler und industrieller Abwässer. Vom Wasser 73: 243–248.Google Scholar
  13. Huner NPA, Öquist G. Sundblad LG (1992) Low-measuring temperature-induced artificial increase in chlorophylla fluorescence. Plant Physiol. 98: 749–752.Google Scholar
  14. Janssen LHJ, van Hasselt PR (1988) Temperature-induced alterations ofin vivo chlorophylla fluorescence induction in cucumber as affected by DCMU. Photosynth. Res. 15: 153–162.Google Scholar
  15. Janssen LHJ, Wamts HE, van Hasselt PR (1992) Temperature dependence of chlorophyll fluorescence induction and photosynthesis in tomato as affected by temperature and light dependence during growth. J. Plant Physiol. 139: 549–554.Google Scholar
  16. Jeffrey SW, Humphrey GF (1975) New spectrometric equations for determining chlorophyllsa, b, c 1, andc 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191–194.Google Scholar
  17. Jursinic PA, Mccarthy SA, Bricker TM, Stemler A (1991) Characteristics of two atrazine-binding sites that specifically inhibit photosystem-II function. Biochim. Biophys. Acta 1059: 312–322.Google Scholar
  18. Kautsky H, Franck U (1943) Chlorophyllfluoreszenz und Kohlensäureassimilation. X. Mitteilung: Chlorophyll-fluoreszenz von Ulva lactuca und ihre Abhängigkeit von Temperatur und Lichtintensität. Biochem. Z. 315: 156–176.Google Scholar
  19. Kautsky H, Hirsch A. (1934) Chlorophyllfluoreszenz und Kohlensäureassimilation. I. Mitteilung: Das Fluoreszenverhalten grüner Pflanzen. Biochem. Z. 274: 423–434.Google Scholar
  20. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Ann. Plant Physiol. Plant Mol. Biol. 42: 313–349.Google Scholar
  21. Laasch H, Pfister K, Urbach W (1981) Comparative binding of photosystem II-herbicides to isolated thylakoid membranes and intact algae. Z. Naturforsch. 36c: 1041–1049.Google Scholar
  22. Noack U (1988) Biotechnologische Nutzung von Mikroalgen. BioEngineering 3: 251–252.Google Scholar
  23. Oehmichen U, Karrenbrock F, Haberer K (1987) Determination of N-pesticides in natural waters. Fresenius Z. Anal. Chem. 327: 715–719.Google Scholar
  24. Renger G (1986) Herbicide interaction with photosystem II: recent developments Physiol Veg. 24: 509–521.Google Scholar
  25. Reupert R, Brausen G, Plöger E (1992) Analytical method for the determination of pesticides by micro-HPLC. GIT Special Chromatographie 1/92.Google Scholar
  26. Reupert R, Plöger E (1989) Bestimmung stickstoffhaltiger Pflanzenbehandlungsmittel in Trink-, Grund- und Oberflächenwasser. Vom Wasser 72: 211–233.Google Scholar
  27. Samuelsson G, Öquist G. (1977) A method for studying photosynthetic capacities of unicellular algae based onin-vivo chlorophyll fluorescence. Physiol. Plant 40: 315–319.Google Scholar
  28. Sayk F, Schmidt C (1986) Algen-Fluoreszenz-Autometer, eine computergesteuerte Biotest-Meßapparatur. Z. Wasser-Abwasser Forsch 19: 182–184.Google Scholar
  29. Schlett C (1991) Multi-residue of pesticides by HPLC after solid-phase extraction. Fresenius J. Anal. Chem. 339: 344–347.Google Scholar
  30. Schlösser UG (1982) Sammlung von Algenkulturen. Ber. Dtsch. bot. Ges. 95: 181–276.Google Scholar
  31. Schmidt C (1983) Actual standard and further development of an algal fluoresence bioassay. Ecotoxicology and Environmental Safety 7: 276–283.PubMedGoogle Scholar
  32. Schmidt C (1987) Anwendungsbereiche und Ergebnisse des Algenfluoreszenztests. Arch. Hydrobiol. Beih. 29, 107–116.Google Scholar
  33. Schreiber U (1986) Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth. Res. 9: 261–272.Google Scholar
  34. Schreiber U, Neubauer C, Schliwa U (1993) PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research. Photosynth. Res. (in press).Google Scholar
  35. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a type of modulation fluorometer. Photosynth. Res. 10: 51–62.Google Scholar
  36. Senger H, Frickel-Faulstich B (1974) The regulation of electron flow in synchronized cultures of green algae. In: Avron M(ed.), Proc. 3rd Int. Congr. on Photosynthesis. Elsevier, Amsterdam, 715–727.Google Scholar
  37. Shochat S, Owens GC, Hubert P, Ohad I (1982) The dichlorophenyldimethylurea-binding site in thylakoids ofChlamydomonas reinhardtii. Biochim. Biophys. Acta 681: 21–31.Google Scholar
  38. Siderer Y, Lavintman N, Gilon C, Ohad I (1984) A nitroxide diuron analog as a probe for the mode of action of herbicides. Z. Naturforsch. 39c: 342–346.Google Scholar
  39. Starr RC, Zeikus JA (1987) Utex. The culture collection of algae at the University of Texas, Austin. J. Phycol. 23: 37–37. (Supplement to September 1987).Google Scholar
  40. Strotmann, H (1966) Kinetische Untersuchungen an Teilschritten der Nitratreduktion vonChlorella im Licht. Dissertation, Joh.-Wolfgang von Goethe Universität Frankfurt.Google Scholar
  41. Tischer W, Strotmann H (1977) Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim. Biophys. Acta 460: 113–125.PubMedGoogle Scholar
  42. Van Reensen JJS (1982) Molecular mechanism of herbicide action near photosystem II. Physiol. Plant. 54: 515–521.Google Scholar
  43. Van Wijk KJ, van Hasselt PR (1990) The quantum efficiency of PSII and its relation to non-photochemical quenching of chlorophyll fluorescence; the effect of measuring — and growth temperature. Photosynth. Res. 25: 233–240.Google Scholar
  44. Verordnung über Trinkwasser und über Wasser für Lebensmittelbetriebe (Trinkwasserverordnung) vom 22. Mai 1986. BGBl.I, S.760.Google Scholar
  45. Weston LH, Robinson PK (1991) Detection and quantification of triazine herbicides using algal cell fluorescence. Biotechnology Techniques 5 (5): 327–330.Google Scholar
  46. Wiegand-Rosinus M, Barth U, Obst U, Haberer K (1989) Sensitivität zweier handelsüblicher Biotests gegenüber ausgewählten Schadstoffen. Vom Wasser 73: 449–456.Google Scholar
  47. Wiessner W (1968) Enzymaktivität und Kohlenstoffassimilation bei Grünalgen unterschiedlichen ernährungsphysiologischen Typs. Planta 79: 92–98.Google Scholar
  48. Ziegler K, Egle K (1965) Zur quantitativen Analyse der Chloroplastenpigmente. I. Kritische Überprüfung der spektralphotometrischen Chlorophyllbestimmung. Beitr. Biol. Pfl. 41: 11–37.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Roswitha Conrad
    • 1
  • Claudia Büchel
    • 1
  • Christian Wilhelm
    • 1
  • Wafa Arsalane
    • 2
  • Claire Berkaloff
    • 2
  • Jean-Claude Duval
    • 2
  1. 1.Institut für Allgemeine Botanik, Johannes Gutenberg-Universität MainzMainzGermany
  2. 2.Ecole Normale SuperieureParisFrance

Personalised recommendations