Advertisement

Journal of Applied Phycology

, Volume 6, Issue 3, pp 295–300 | Cite as

Optimization of γ-linolenic acid (GLA) production inSpirulina platensis

  • M. Tanticharoen
  • M. Reungjitchachawali
  • B. Boonag
  • P. Vonktaveesuk
  • A. Vonshak
  • Z. Cohen
Article

Abstract

The cyanobacteriumSpirulina platensis is one of the most promising sources of the polyunsaturated fatty acid γ-linolenic acid (GLA). The GLA content ofSpirulina can be enhanced by cultivation under light-dark cycles in the laboratory or outdoors. Thus, in strain BP, the GLA content increased from 1.2 to 1.6% when cultivated under light-dark cycles. Moreover, in the derived mutant Z19, the GLA content reached 2.4% when cultivated outdoors. To the best of our knowledge, this is the highest GLA content ever reported for any alga.

Key words

cyanobacteria fatty acids γ-linolenic acid mutants environmental conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biagi PL, Bordoni A, Masi M, Ricci G, Fanelli C, Patrizi A, Ceccolini E (1988) Evening primrose oil (Efamol) in the treatment of children with atopic eczema. Drugs exptl Clin. Res. 14: 291–297.Google Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.PubMedGoogle Scholar
  3. Ciferri O (1983)Spirulina, the edible microorganism. Microbiol. Rev. 47: 551–578.PubMedGoogle Scholar
  4. Cohen Z, Vonshak A, Richmond A (1987) Fatty acid composition ofSpirulina strains grown under various environmental conditions. Phytochem. 26: 2255–2258.Google Scholar
  5. Cohen Z, Cohen S (1991) Preparation of eicosapentaenoic acid concentrate fromPorphyridium cruentum. J. Am. Oil Chem. Soc. 68: 16–19.Google Scholar
  6. Cohen Z, Didi S, Heimer YM (1992) Over-production of γ-linolenic and eicosapentaenoic acids by algae. Plant Phys. 98: 569–572.Google Scholar
  7. Cohen Z, Reungjitchachawali M, Siangdung W, Tanticharoen M (1993a) Production and partial purification of γ-linolenic acid and some pigments fromSpirulina platensis. J. appl. Phyc. 5: 109–115.Google Scholar
  8. Cohen Z, Norman NH, Heimer YM (1993b) Evaluating the potential of substituted pyridazinones for inducing polyunsaturated fatty acid overproduction in algae. Phytochem. 32: 259–264.Google Scholar
  9. Cohen Z, Reungjitchachawali M, Siangdung W, Tanticharoen M, Heimer YM (1993c) Herbicide resistant lines of microalgae: Growth and fatty acid composition. Phytochem. 34: 973–978.Google Scholar
  10. Hirano M, Mori H, Miura Y, Matsunaga N, Nakamura N, Matsunaga T (1990) γ-linolenic acid production by microalgae. Appl. Biochem. Biotechnol. 24: 183–191.Google Scholar
  11. Horrobin DF (1983) The role of essential fatty acids and prostaglandins in the premenstrual syndrome. J. Reprod. Med. 28: 465–468.PubMedGoogle Scholar
  12. Hudson BJF, Karis IG (1974) The lipids of the algaSpirulina. J. Sci. Food Agric. 25: 759–763.PubMedGoogle Scholar
  13. Ishikawa T, Fujiyama Y, Igarashi C, Morino M, Fada N, Kagami A, Sakamoto T, Nagano M, Nakamura H (1989) Clinical features of familial hypercholesterolemia. Atherosclerosis 75: 95–103.PubMedGoogle Scholar
  14. Kenyon CN, Stanier RY (1970) Possible evolutionary significance of polyunsaturated fatty acids in blue-green algae. Nature 227: 1164–1166.PubMedGoogle Scholar
  15. Mori T, Muranaka T, Miki W, Yamaguchi K, Konosu S, Watanabe T (1987) Pigmentation of cultured sweet smelt fed diets supplemented with a blue-green algaSpirulina maxima. Nippon Suisan Gakkaishi 53: 433–438.Google Scholar
  16. Murata N, Ishida I (1987) Lipids of blue-green algae (cyanobacteria). In P. Stumpf (ed.), The Biochemistry of Plants, Vol. 9. Academic Press, New York: 315–347Google Scholar
  17. Nakahara T, Yokochi T, Kamisaka Y, Suzuki O (1992) Gamma linolenic acid from genusMortierella. In Kyle DJ, Ratledge C (eds), Industrial Application of Single Cell Oil. American Oil Chemists' Society, Champaign), IL; 61–97.Google Scholar
  18. Nichols BW, Wood BJB (1968) The occurrence and biosynthesis of γ-linolenic acid in a blue-green alga,Spirulina platensis. Lipids 3: 46–50.Google Scholar
  19. Roughan PG (1989)Spirulina: a source of dietary gamma-linolenic acid? J. Sci. Food Agric. 47: 85–93.Google Scholar
  20. Suzuki O, Toshihiro Y (1985) Microbial production of γ-linolenic acid-rich phosphatidyl choline. Jpn Kokai Tokkyo Koho JP 62 25, 989Google Scholar
  21. Sukenik A, Carmeli Y (1990) Lipid synthesis and fatty acid composition inNannochloropsis sp. (Eustimatophyceae) grown in a light-dark cycle. J. Phycol. 26: 463–469.Google Scholar
  22. Tanticharoen M, Bunnag B, Vonshak A. (1993) Cultivation ofSpirulina using secondary treated starch wastewater. Australian Biotechnology 3: 223–336.Google Scholar
  23. Vonshak A (1986) Laboratory techniques for the cultivation of microalgae. In Richmond A (ed.), Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, FL: 117–145.Google Scholar
  24. Vonshak A (1987) Biological limitations in developing the biotechnology for algal mass cultivation. Sciences de l'Eau 6: 99–103.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • M. Tanticharoen
    • 1
  • M. Reungjitchachawali
    • 1
  • B. Boonag
    • 1
  • P. Vonktaveesuk
    • 1
  • A. Vonshak
    • 2
  • Z. Cohen
    • 2
  1. 1.Department of Materials and EnergyKing Mongkut's Institute of TechnologyThonburi, Bangmod, Rasburan, BangkokThailand
  2. 2.The laboratory for Microalgal Biotechnology, Jacob Blaustein Institute for Desert ResearchBen-Gurion University of the NegevSede-Boker Campus

Personalised recommendations