Journal of Statistical Physics

, Volume 87, Issue 5–6, pp 1287–1306 | Cite as

A general approach to association using cluster partition functions

  • E. M. Hendriks
  • J. Walsh
  • A. R. D. van Bergen


A systematic and fundamental approach to associating mixtures is presented. It is shown how the thermodynamic functions may be computed starting from a partition function based on the cluster concept such as occurs in chemical theory. The theory provides a basis for and an extension of the existing chemical theory of (continuous) association. It is applicable to arbitrary association schemes. Analysis of separate cases is not necessary. The assumptions that were made to allow the development were chosen such as to make the principle of reactivity valid. It is this same principle that links various theories: the chemical theory of continuous association, the lattice fluid hydrogen bonding model, and first-order perturbation theory. The equivalence between these theories in appropriate limits is shown in a general and rigorous way. The theory is believed to provide a practical framework for engineering modeling work. Binary interaction parameters can be incorporated. The association scheme is accounted for by a set of generic equations, which should facilitate robust implementation in computer programs.

Key Words

Association phase equilibrium statistical mechanics partition function chemical engineering equation of state chemical equilibrium cluster distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, New reference equation of state for associating liquids,Ind. Eng. Chem. Res. 29:1709–1721 (1990).Google Scholar
  2. 2.
    P. C. J. van Dongen and M. H. Ernst,J. Stat. Phys. 37:301 (1984)Google Scholar
  3. 3.
    I. G. Economou and M. D. Donohue, Chemical, quasi-chemical and perturbation theories for associating fluids.AIChE J. 37:1875 (1991).Google Scholar
  4. 4.
    I. G. Economou and M. D. Donohue,Ind. Eng. Chem. Res. 31:2388 (1992).Google Scholar
  5. 5.
    P. J. Flory,Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953).Google Scholar
  6. 6.
    A. J. Guggenheim,Mixtures (Clarendon Press, Oxford, 1952).Google Scholar
  7. 7.
    R. B. Gupta and K. P. Johnston, Lattice fluid hydrogen bonding model with a local segment density,Fluid Phase Equilibria 99:135–151 (1994).Google Scholar
  8. 8.
    R. A. Heidemann and J. M. Prausnitz, A van-der-Waals-type equation of state for fluids with associating molecules,Proc. Natl. Acad. Sci. USA 73:1773 (1976).Google Scholar
  9. 9.
    E. M. Hendriks, Analytic expression for the distribution of gel species in spatially homogeneous systems,J. Phys. A: Math. Gen. 18:L579-L583 (1985).Google Scholar
  10. 10.
    E. M. Hendriks and A. R. D. van Bergen, Application of reduction method to phase equilibria equations,Fluid Phase Equilibria 74:17–34 (1992).Google Scholar
  11. 11.
    S. H. Huang and M. Radosz, Equation of state for small, large, polydisperse, and associating molecules,Ind. Eng. Chem. Res. 29:2284–2294, (1990).Google Scholar
  12. 12.
    G. D. Ikonomou and M. D. Donohue, Thermodynamics of hydrogen-bonded molecules: The associated perturbed anisotropic chain theory.AIchE J. 32:1716 (1986).Google Scholar
  13. 13.
    G. Jackson, W. G. Chapman, and K. E. Gubbins, Phase equilibrium of associating fluids: Spherical molecules with multiple bonding sites,Mol. Phys. 65:1 (1988).Google Scholar
  14. 14.
    G. M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis, and D. P. Tassios, An equation of state for associating fluids,Ind. Eng. Chem. Res. 35:4310 (1996).Google Scholar
  15. 15.
    A. M. Lockett III,J. Chem. Phys. 72:4822, (1980).Google Scholar
  16. 16.
    D. Missopolinou and Panayiotou, Thermodynamic systems of (oxy)alcohols and (poly)ethers,Fluid Phase Equilibria 110:73–88 (1995).Google Scholar
  17. 17.
    C. Panayiotou and I. C. Sanchez, Hydrogen bonding in fluids: An quation-of-state approach,J. Phys. Chem. 95:10090–10097 (1991).Google Scholar
  18. 18.
    J. M. Prausnitz, R. N. Lichtenthaler, and E. Gomez de Azevedo,Molecular Thermodynamics of fluid phase equilibria (Prentice-Hall, Englewood Cliffs, New Jersey, 1986).Google Scholar
  19. 19.
    R. C. Reid, J. M. Prausnitz, and B. E. Poling,The Properties of Gases and Liquids (McGraw-Hill, New York, 1987).Google Scholar
  20. 20.
    J. Suresh and E. J. Beckman, Prediction of liquid-liquid equilibria in ternary mixtures from binary data,Fluid Phase Equilibria 99:219–240 (1994).Google Scholar
  21. 21.
    E. C. Voutsas, G. M. Kontogeorgis, I. V. Yakoumis, and D. P. Tassios, Correlation of liquid-liquid equilibria for alcohol/hydrocarbon mixtures using the CPA equation of state,Fluid Phase equilibria, submitted.Google Scholar
  22. 22.
    S. M. Walas,Phase Equilibria in Chemical Engineering (Butterworth, Stoneham, Massachusetts, 1985).Google Scholar
  23. 23.
    M. S. Wertheim,J. Stat. Phys. 35:19 (1984).Google Scholar
  24. 24.
    M. S. Wertheim,J. Stat. Phys. 42:459 (1986).Google Scholar
  25. 25.
    I. V. Yakoumis, G. M. Kontogeorgis, E. C. Voutsas, and D. P. Tassios, An equation of state for associating fluids: Part ii. Vapour-liquid equilibria for alcohol/hydrocarbon mixtures,Fluid Phase Equilibria, submitted.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • E. M. Hendriks
    • 1
  • J. Walsh
    • 2
  • A. R. D. van Bergen
    • 3
  1. 1.Shell Research and Technology Center, AmsterdamAmsterdamThe Netherlands
  2. 2.Shell Westhollow Technology CenterHouston
  3. 3.Shell International Exploration and Production B. V.Rijswijk-ZHThe Netherlands

Personalised recommendations