Journal of Statistical Physics

, Volume 87, Issue 3–4, pp 755–798 | Cite as

Critical phenomena with convergent series expansions in a finite volume

  • Hildegard Meyer-Ortmanns
  • Thomas Reisz


Linked cluster expansions are generalized from an infinite to a finite volume. They are performed to 20th order in the expansion parameter to approach the critical region from the symmetric phase. A new criterion is proposed to distinguish first- from second-order transitions within a finite-size scaling analysis. The criterion applies also to other methods for investigating the phase structure, such as Monte Carlo simulations. Our computational tools are illustrated with the example of scalar (O(N) models with four- and six-point couplings forN=1 andN=4 in three dimensions. It is shown how to localize the tricritical line in these models. We indicate some further applications of our methods to the electroweak transition as well as to models for superconductivity.

Key Words

Finite-size scaling analysis linked cluster expansions scalarO(N) models critical phenomena tricriticality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Meyer-Ortmanns, Phase transitions in quantum chromodynamics,Rev. Mod. Phys. 68:473 (1996).Google Scholar
  2. 2.
    M. Wortis, Linked cluster expansion, inPhase Transition and Critical Phenomena, Vol. 3, C. Domb and M. S. Green, eds. (Academic Press, London, 1974).Google Scholar
  3. 3.
    C. Itzykson and J.-M. Drouffe,Statistical Field Theory, Vol. 2 (Cambridge University Press, Cambridge, 1989).Google Scholar
  4. 4.
    A. J. Guttmann, asymptotic analysis of power-series expansions, inPhase Transitions and Critical Phenomena, Vol. 13, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1989).Google Scholar
  5. 5.
    M. Lüscher and P. Weisz,Nucl. Phys. B 300[FS22]:325 (1988).Google Scholar
  6. 6.
    M. Lüscher and P. Weisz,Nucl. Phys. B 290[FS20]:25 (1987).Google Scholar
  7. 7.
    M. Lüscher and P. Weisz,Nucl. Phys. B 295[FS21]:65 (1988).Google Scholar
  8. 8.
    T. Reisz,Nucl. Phys. B 450:569 (1995).Google Scholar
  9. 9.
    T. Reisz,Phys. Lett. B 360:77 (1995).Google Scholar
  10. 10.
    F. Wilczek,Int. J. Mod. Phys. A 7:3911 (1992).Google Scholar
  11. 11.
    K. Rajagopal and F. Wilczek,Nucl. Phys. B 399:395,404:577 (1993).Google Scholar
  12. 12.
    A. Pordt, A convergence proof for linked cluster expansions, MS-TPI-96-05 [hep-lat 9604010].Google Scholar
  13. 13.
    A. Pordt and T. Reisz, Linked cluster expansions beyond nearest neighbour interactions: Convergence and graph classes, HD-THEP-96-09, MS-TPI-96-06 [hep-lat 9604021] to appear inInt. J. Mod. Phys. A. Google Scholar
  14. 14.
    H. Meyer-Ortmanns and F. Karsch,Phys. Lett. 193B:489 (1987).Google Scholar
  15. 15.
    P. Butera and M. Comi, New extended high temperature series for theN-vector spin models on three-dimensional bipartite lattices [hep-lat 9505027].Google Scholar
  16. 16.
    M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Strong coupling expansion of latticeO(N) sigma models [hep-lat 9509025].Google Scholar
  17. 17.
    M. N. Barbour, InPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983), p. 145.Google Scholar
  18. 18.
    K. Binder and D. P. Landau,Phys. Rev. B 30:1477 (1984); K. Binder,Rep. Prog. Phys. 50:783 (1987).Google Scholar
  19. 19.
    C. Borgs and J. Z. Imbrie,Commun. Math. Phys. 123:305 (1989); C. Borgs and R. Kotecky,J. Stat. Phys. 61:79 (1990): C. Borgs and R. Kotecky,Phys. Rev. Lett. 68:1734 (1992).Google Scholar
  20. 20.
    C. Borgs, R. Kotecky, and S. Miracle-Sole,J. Stat. Phys. 62:529 (1991).Google Scholar
  21. 21.
    D. S. Gaunt and A. J. Guttmann, Asymptotic analysis of coefficients, inPhase Transition and Critical Phenomena, Vol. 3, C. Domb and M. S. Green, eds. (Academic Press, London, 1974).Google Scholar
  22. 22.
    M. Blume,Phys. Rev. 141:517 (1966).Google Scholar
  23. 23.
    H. W. Capel,Physica 32:966 (1966).Google Scholar
  24. 24.
    M. Blume, V. J. Emery, and R. B. Griffiths,Phys. Rev. A 4:1071 (1971).Google Scholar
  25. 25.
    J. Glimm and A. Jaffe,Quantum Physics, A Functional Point of View, 2nd ed. (Springer, Berlin, 1987).Google Scholar
  26. 26.
    R. Fernandez, J. Fröhlich, and A. D. Sokal,Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Springer-Verlag, Berlin, 1992).Google Scholar
  27. 27.
    G. A. Baker, Jr., and J. D. Johnson,J. Math. Phys. 28:1146 (1987).Google Scholar
  28. 28.
    T. Hara, T. Hattori, and H. Tasaki,J. Math. Phys. 26:2922 (1985).Google Scholar
  29. 29.
    K. Kajantie, M. Laine, K. Remmukainen, and M. Shaposhnikov,Nucl. Phys. B 458: 90 (1996).Google Scholar
  30. 30.
    Z. Fodor, J. Hein, K. Jansen, A. Jaster, and I. Montvay,Nucl. Phys. B 439:147 (1995).Google Scholar
  31. 31.
    L. Radzikovsky,Europhys. Lett. 29:227 (1995).Google Scholar
  32. 32.
    B. Bergerhoff, F. Freire, D. Litim, S. Lola, and C. Wetterich,Phys. Rev. B 53:5734 (1996).Google Scholar
  33. 33.
    J. Bartholomew,Phys. Rev. B 28:5378 (1983).Google Scholar
  34. 34.
    A. Esser, V. Dohm, and X. S. Chen,Physica A 222:355 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Hildegard Meyer-Ortmanns
    • 1
  • Thomas Reisz
    • 1
    • 2
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  2. 2.Heisenberg

Personalised recommendations