Journal of Statistical Physics

, Volume 79, Issue 5–6, pp 969–992 | Cite as

Pathological behavior of renormalization-group maps at high fields and above the transition temeprature

  • Aernout C. D. van Enter
  • Roberto Fernández
  • Roman Kotecký


We show that decimation transformations applied to high-q Potts models result in non-Gibbsian measures even for temperatures higher than the transition temperature. We also show that majority transformations applied to the Ising model in a very strong field at low temperatures produce non-Gibbsian measures. This shows that pathological behavior of renormalization-group transformations is even more widespread than previous examples already suggested.

Key Words

Non-Gibbsian measures real-space renormalization complete analyticity majority-rule decimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Benfatto, E. Marinari, and E. Olivieri, Some numerical results on the block spin transformation for the2d Ising model at the critical point,J. Stat. Phys. 78:731–757 (1995).Google Scholar
  2. 2.
    S. N. Bernstein,Probability Theory (Gostechizdat, Moscow, 1946).Google Scholar
  3. 3.
    J. Bricmont, K. Kuroda, and J. L. Lebowitz, First order phase transitions in lattice and continuous systems: Extension of Pirogov-Sinai theory.commun. Math. Phys. 101:501–538 (1985).Google Scholar
  4. 4.
    J. T. Chayes, L. Chayes, and J. Fröhlich, The low-temperature behavior of disordered magnets,Commun. Math. Phys. 100:399–437 (1985).Google Scholar
  5. 5.
    L. Chayes, R. Kotecký, and S. B. Shlosman, Aggregation and intermediate phases in dilute spin systems. CTS preprint (1994).Google Scholar
  6. 6.
    R. L. Dobrushin and S. B. Shlosman, Completely analytical interactions: Constructive description.J. Stat. Phys. 46:983–1014 (1987).Google Scholar
  7. 7.
    R. L. Dobrushin and S. B. Shlosman, Private communication (1992).Google Scholar
  8. 8.
    R. Fernández and C.-Ed. Pfister, Non-quasilocality of projections of Gibbs measures, EPFL preprint (1994).Google Scholar
  9. 9.
    C. M. Fortuin, J. Ginibre, and P. W. Kasteleyn, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89–103 (1971).Google Scholar
  10. 10.
    H.-O. Georgii,Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988).Google Scholar
  11. 11.
    R. B. Griffiths, Rigorous results and theorems, InPhase Transitions and Critical Phenomena, Vol. 1 C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).Google Scholar
  12. 12.
    R. B. Griffiths and P. A. Pearce, Position-space renormalization-group transformations: Some proofs and some problems,Phys. Rev. Lett. 41:917–920 (1978).Google Scholar
  13. 13.
    R. B. Griffiths and P. A. Pearce, Mathematical properties of position-space renormalization-group transformations.J. Stat. Phys. 20:499–545 (1979).Google Scholar
  14. 14.
    O. Häggström, Gibbs states and subshifts of finite type, University of Göteborg preprint (1993).Google Scholar
  15. 15.
    O. Häggström, On phase transitions for subshifts of finite type, University of Göteborg preprint (1993).Google Scholar
  16. 16.
    O. Häggström, On the relation between finite range potentials and subshifts of finite type, University of Göteborg preprint (1993).Google Scholar
  17. 17.
    A. Hasenfratz and P. Hazenfratz, Singular renormalization group transformations and first order phase transitions (I),Nucl. Phys. B 295[FS21]:1–20 (1988).Google Scholar
  18. 18.
    N. T. A. Haydn, Classification of Gibbs' states on Smale spaces and one-dimensional lattice systems,Nonlinearity 7:345–366 (1994).Google Scholar
  19. 19.
    I. A. Ibragimov and Yu. V. Linnik,Independent and Stationary Sequences of Random Variables (Wolters-Noordhoff, Groningen, 1971).Google Scholar
  20. 20.
    R. B. Israel, Banach algebras and Kadanoff transformations, J. Fritz, J. L. Lebowitz, and D. Szász, eds.Random Fields (Esztergom, 1979), Vol. II, (North-Holland, Amsterdam, 1981), pp. 593–608.Google Scholar
  21. 21.
    T. Kennedy, Some rigorous results on majority rule renormalization group transformations near the critical point,J. Stat. Phys. 72:15–37 (1993).Google Scholar
  22. 22.
    R. Kotecký and S. B. Shlosman, First-order transitions in large-entropy lattice models,Comm. Math. Phys. 83:493–515 (1982).Google Scholar
  23. 23.
    J. Lörinczi, Some results on the projected two-dimensional Ising model, InOn Three Levels M. Fannes, C. Maes, and A. Verbeure, eds. (Plenum Press, New York, 1994), pp. 373–380.Google Scholar
  24. 24.
    J. Lörinczi and K. Vande Velde, A note on the projection of Gibbs measures.J. Stat. Phys. 77:881–887 (1994).Google Scholar
  25. 25.
    J. Lörinczi and M. Winnink, Some remarks on almost Gibbs states, InCellular Automata and Cooperative Systems, N. Boccara, E. Goles, S. Martinez, and P. Picco, eds. (Kluwer, Dordrecht, 1993), pp. 423–432.Google Scholar
  26. 26.
    F. Martinelli and E. Olivieri, Some remarks on pathologies of renormalization-group transformations,J. Stat. Phys. 72:1169–1177 (1993).Google Scholar
  27. 27.
    F. Martinelli and E. Olivieri, Instability of renormalization-group pathologies under decimation, University of Rome II preprint (1994);J. Stat. Phys. 79:25–42 (1995).Google Scholar
  28. 28.
    J. Salas, Low-temperature series for renormalized operators: The ferromagnetic squarelattice Ising model, New York University preprint mp-arc 94-290 (1994).Google Scholar
  29. 29.
    A. C. D. van Enter, R. Fernández, and A. D. Sokal, Renormalization transformations in the vicinity of first-order phase transitions: What can and cannot go wrong,Phys. Rev. Lett. 66:3253–3256 (1991).Google Scholar
  30. 30.
    A. C. D. van Enter, R. Fernández, and A. D. Sokal, Regularity properties and patholgies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory,J. Stat. Phys. 72:879–1167 (1993).Google Scholar
  31. 31.
    K. Vande Velde. Private communication.Google Scholar
  32. 32.
    M. Zahradník, On the structure of low temperature phases in three-dimensional spin models with random impurities: A general Pirogov-Sinai approach, InPhase Transitions: Mathematics, Physics, Biology,..., R. Kotecký, ed. (World Scientific, Singapore, 1993), pp. 225–237.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Aernout C. D. van Enter
    • 1
  • Roberto Fernández
    • 2
    • 3
  • Roman Kotecký
    • 4
    • 5
  1. 1.Institute for Theoretical PhysicsRijksuniversiteit GroningenGroningenThe Netherlands
  2. 2.Institut de Physique ThéoriqueEcole Polytechnique Fédérale de Lausanne, PHB-EcublensLausanneSwitzerland
  3. 3.Facultad de Mathemática Astronomía y FísicaUniversidad Nacional de Córdoba, Ciudad UniversitariaCórdobaArgentina
  4. 4.CPT CNRSMarseille Cedex 9France
  5. 5.Center for Theoretical StudyCharles UniversityPrague 1Czech Republic

Personalised recommendations