Biogeochemistry

, Volume 30, Issue 1, pp 31–58

Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data

  • Bernhard Mayer
  • Karl H. Feger
  • Anette Giesemann
  • Hans-J. Jäger
Article

Abstract

The isotopic composition of SO42- in bulk precipitation, canopy throughfall, seepage water at three different soil depths, stream water, and groundwater was monitored in two forested catchments in the Black Forest (Germany) between November 1989 and February 1992. Isotope measurements on aqueous sulfate were complemented by δ34S-analyses on SO2 in the air, total sulfur and inorganic sulfate in the soil, and bedrock sulfur, in order to identify sources and biogeochemical processes affecting S cycling in catchments with base poor, siliceous bedrock. Stable S isotope data indicated that atmospheric deposition and not mineral weathering is the major source of S in both catchments since δ34S-values for sulfate in the soil, in seepage water, and in stream water were generally found to be similar to the mean δ34S-values of precipitation SO42- (+2.1. However, δ18O-values of seepage water SO42- at 30 cm and especially at 80 cm depth were depleted by several per mil with respect to those of the atmospheric deposition (+7.5 to +13.5. This indicates that in both catchments a considerable proportion of the seepage water SO42- is derived from mineralization of carbon-bonded soil S and must therefore have cycled through the organic soil S pool. δ34S-values for different S compounds in the solid soil were found to differ markedly depending on S fraction and soil depth. Since atmospheric S deposition with rather constant δ34S-values was identified as the dominant S source in both catchments, this is interpreted as a result ofin situ isotope fractionation rather than admixture of isotopically different S. The differences between the δ34S-values of seepage water and soil sulfate and those of organic soil S compounds are consistent with a model in which SO42- uptake by vegetation and soil microorganisms favours34SO42- slightly, whereas during mineralization of organic soil S to aqueous SOSO42-,32S reacts preferentially. However, the data provide evidence for negligible isotope fractionation during physico-chemical S transformations such as adsorption/desorption in aerated forest soils.

Key words

Catchment isotope fractionation sulfur cycling stable isotopes δ34δ18Osulfate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASTM (1993) Standard test methods for total sulfur in the analysis sample of coal and coke. Annual Book of ASTM Standards Vol. 05.05. D 3177-89: 333–336Google Scholar
  2. Andreae MO & Jaeschke WA (1992) Exchange of sulphur between biosphere and atmosphere over temperate and tropical regions. In: Howarth RW Stewart JWB & Ivanov MV (Eds) SCOPE 48: Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies (pp. 27–61). John Wiley & Sons, ChichesterGoogle Scholar
  3. Binkley D, Driscoll CT, Allen HL, Schoeneberger P. & McAvoy D (1989) Acid Deposition and forest soils. Ecological Studies 72. Springer-Verlag, New YorkGoogle Scholar
  4. Brahmer G (1990) Wasser- und Stoffbilanzen bewaldeter Einzugsgebiete im Schwarzwald unter besonderer Berücksichtigung naturräumlicher Ausstattungen und atmogener Einträge. Freiburger Bodenkundl. Abh. 25: 1–295Google Scholar
  5. Brahmer G & Feger KH (1991) Hydrochemical budgets for experimental watersheds affected by nitrogen and sulfur treatments. IAHS-Publ. 204: 443–455Google Scholar
  6. Bremner JM & Steele CG (1978) Role of microorganisms in the atmospheric sulphur cycle. Adv. Microb. Ecol. 2: 155–201Google Scholar
  7. Buell GR & Peters NE (1988) Atmospheric deposition effects on the chemistry of a stream in northeastern Georgia. Water, Air, Soil Pollut. 39: 275–291Google Scholar
  8. Bücking WF Evers H & Krebs A (1983) Bioelementgehalte der Niederschlags-, Sicker- und Bodenwässerin Abhängigkeit von Baumart und Standort. Forstw. Centralbl. 102: 293–297Google Scholar
  9. Caron F Tessier A, Kramer JR, Schwarcz HP & Rees CE (1986) Sulfur and oxygen isotopes of sulfate in precipitation and lakewater, Quebec, Canada. Appl. Geochem. 1: 601–606Google Scholar
  10. Chiba H & Sakai H (1985) Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures. Geochim. Cosmochim. Acta 49: 993–1000Google Scholar
  11. Dämmgen U., Grünhage L & Jäger HJ (1985) System zur flächendeckenden Erfassung von luftgetragenen Schadstoffen und ihren Wirkungen auf Pflanzen. Landschaftsökologisches Messen und Auswerten 1: 95–106Google Scholar
  12. David MB, Mitchell MJ & Scott TJ (1987) Importance of biological processes in the sulfur budget of a northern hardwood ecosystem. Biol. Fertil. Soils 5: 258–264Google Scholar
  13. Epstein S & Mayeda TK (1953) Variation of 018 content of waters from natural sources. Geochim. Cosmochim. Acta 4: 213–224Google Scholar
  14. Feger KH (1993) Bedeutung von ökosystemintemen Umsätzen und Nutzungseingriffen für den Stoffhaushalt von Waldlandschaften. Freiburger Bodenkundl. Abh. 31: 1–236Google Scholar
  15. Feger KH (1995) Solute fluxes and sulfur cycling in forested catchments in SW Germany as influenced by experimental (NH4)2SO4 treatments. Water, Air, Soil Pollut. 79: 109–130Google Scholar
  16. Feger KH, Brahmer G & Zöttl HW, (1990) Element budgets of two contrasting catchments in the Black Forest (Federal Republic of Germany). J. Hydrol. 116: 85–99Google Scholar
  17. Feger KH, Brahmer G & Zöttl HW, (1993) Projekt ARINUS: VII.Zwischenbilanz und Perspektiven. KfK/PEF-Berichte 104: 23–40Google Scholar
  18. Freney (1967) Sulfur-containing organics. In: McLaren AD & Peterson GH (Eds) Soil Biochemistry 1: 229–259. Marcel Dekker Inc., New YorkGoogle Scholar
  19. Führer HW, Brechtel HM, Ernstberger H & Erpenbeck C (1988) Ergebnisse von neuen Depositionsmessungen in der Bundesrepublik Deutschland und im benachbarten Ausland. DVWK Mitteilungen 14: 1–66Google Scholar
  20. Fuller RD, Mitchell MJ, Krouse HR, Wyskowski BJ & Driscoll CT (1986) Stable sulfur isotope ratios as a tool for interpreting ecosystem sulfur dynamics. Water, Air, Soil Pollut. 28: 163–171Google Scholar
  21. Germida JJ, Wainwright M & Gupta VVSR (1992) Biochemistry of sulfur cycling in soil. In: Stotzky G & Bollag JM (Eds) Soil Biochemistry 7: 1–53. Marcel Dekker Inc., New YorkGoogle Scholar
  22. Gélineau M, Carignan R & Tessier A (1989) Study of the transit of sulfate in a Canadian Shield lake watershed with stable oxygen isotope ratios. Appl. Geochem. 4: 195–201Google Scholar
  23. Giesemann A, Jäger HJ, Norman AL, Krouse HR & Brand WA (1994) On-line sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer. Anal. Chem. 66: 2816–2819Google Scholar
  24. Grey DC & Jensen ML (1972) Bacteriogenic sulfur in air pollution. Science 177: 1099–1100Google Scholar
  25. Hesslein RH, Capel MJ & Fox DE (1988) Sulfur isotopes in sulfate in the inputs and outputs of a Canadian Shield watershed. Biogeochemistry 5: 263–273Google Scholar
  26. Holt BD (1991) Oxygen isotopes. In: Krouse HR & Grinenko VA (Eds) SCOPE 43: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment (pp. 55–64). J. Wiley & Sons, ChichesterGoogle Scholar
  27. Johnson DW (1984) Sulfur cycling in forests. Biogeochemistry 1: 29–43Google Scholar
  28. Johnson DW, Richter DD, Van Miegroet H, Cole DW & Kelly JM (1986) Sulfur cycling in five forested ecosystems. Water, Air, Soil Pollut. 30: 965–979Google Scholar
  29. Kiba T, Takagi T, Yoshimura Y & Kishi I (1955) Tin-(II)-strong phosphoric acid. — A new reagent for the determination of sulfate by reduction to hydrogen sulfide. Bull. Chem. Soc. Japan 28: 641–644Google Scholar
  30. Krouse HR (1980) Sulphur isotopes in our environment. In: Fritz P & Fontes JCh (Eds) Hanbook of Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment A (pp. 435–471). Elsevier, AmsterdamGoogle Scholar
  31. Krug EC (1991) Review of acid-deposition-catchment interaction and comments on future reserach needs. J. Hydrol. 128: 1–27Google Scholar
  32. Kurth F, Feger KH & Fischer M (1989) Sulfatadsorptionskapazität und Schwefelbindungsformen in Böden des Schwarzwaldes. DVWK-Mitteilungen 17: 149–156Google Scholar
  33. LfU Baden-Württemberg (1992) Die Luft in Baden-Württemberg. Berichte der Landesanstalt für Umweltschutz Baden-Württemberg 5: 1–79Google Scholar
  34. Likens GE, Bormann FH, Pierce RS, Eaton JS & Johnson NM (1977) Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New YorkGoogle Scholar
  35. Lindberg SE, Lovett GM, Richter DD & Johnson DW (1986) Atmospheric deposition and canopy interactions of major ions in a forest. Science 231: 141–145Google Scholar
  36. Lindberg SE & Garten CT (1988) Sources of sulphur in forest canopy throughfall. Nature 336: 148–151Google Scholar
  37. Lovelock JE, Maggs RJ & Rasmussen RA (1972) Atmospheric dimethyl sulphide in the natural sulfur cycle. Nature 237: 452–453Google Scholar
  38. Mayer B, Fritz P, Prietzel J & Krouse HR (1995) The use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soils. Appl. Geochem. 10: 161–173Google Scholar
  39. Meiwes KJ & Khanna PK (1981) Distribution and cycling of sulphur in the vegetation of two forest ecosystems in an acid rain environment. Plant and Soil 60: 369–375Google Scholar
  40. Mitchell MJ, David MB, Maynard DG & Telang SA (1986) Sulfur constituents in soils and streams of a watershed in the Rocky Mountains of Alberta. Can. J. For. Res. 16: 315–320Google Scholar
  41. Mitchell MJ, David MB & Harrison RB (1992) Sulphur dynamics of forest ecosystems. In: Howarth RW Stewart JWB & Ivanov MV (Eds) SCOPE 48: Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies (pp.215–254). John Wiley & Sons, ChichesterGoogle Scholar
  42. Newman L, Krouse HR & Grinenko VA (1991) Sulphur isotope variations in the atmosphere. In: Krouse HR & Grinenko VA (Eds) SCOPE 43: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment (pp. 133–176).J. Wiley & Sons, ChichesterGoogle Scholar
  43. Nielsen H (1974) Isotopic composition of the major contributors to atmospheric sulfur. Tellus 26: 213–221Google Scholar
  44. Nriagu JO, Coker RD & Barrie LA (1991) Origin of sulphur in Canadian Arctic haze from isotope measurements. Nature 349: 142–145Google Scholar
  45. Rochelle BP, Church MR & David MB (1987) Sulfur retention at intensively studied sites in the US and Canada. Water, Air, Soil Pollut. 33: 73–83Google Scholar
  46. Rolland W, Giesemann A, Feger KH & Jäger HJ (1991) Use of stable S isotopes in the assessment of S turnover in experimental forested watersheds in the Black Forest, Southwest Federal Republic of Germany. In: Stable Isotopes in Plant Nutrition, Soil Fertility and Environmental Studies (pp. 593–598). IAEA, ViennaGoogle Scholar
  47. Saltzman ES, Brass GW & Price DA (1983) The mechanism of sulfate aerosol formation: chemical and sulfur isotopic evidence. Geophys. Res. Lett. 10: 513–516Google Scholar
  48. Sasaki A, Arikawa Y & Folinsbee RE (1979) Kiba reagent method of sulfur extraction applied to isotopic work. Bull. Geol. Surv. Japan 30: 241–245Google Scholar
  49. Schoenau JJ & Bettany JR (1987) Organic matter leaching as a component of carbon, nitrogen, phosphorus, and sulfur cycles in a forest, grassland, and gleyed soil. Soil Sci. Soc. Am. J. 51: 646–651Google Scholar
  50. Schoenau JJ & Bettany JR (1989)34S natural abundance variations in prairie and boreal forest soils. J. Soil Sci. 40: 397–413Google Scholar
  51. Stam AC, Mitchell MJ, Krouse HR & Kahl JS (1992) Stable sulfur isotopes of sulfate in precipitation and stream solutions in a northern hardwood watershed. Water Resour. Res. 28: 231–236Google Scholar
  52. Staubes R, Georgii HW & Ockelmann G (1989) Fluxes of COS, DMS and CS2 from various soils in Germany. Tellus 41B: 305–313Google Scholar
  53. Swank WT & Crossley DA (1988) Forest Hydrology and Ecology at Coweeta. Springer-Verlag, BerlinGoogle Scholar
  54. Trudinger PA & Loughlin RE (1981) Metabolism of simple sulphur compounds. In: Neuberger A & Van Deenen LLM (Eds) Comprehensive Biochemistry Volume 19A: Amino Acid Metabolism and Sulphur metabolism (pp. 165–256). Elsevier, AmsterdamGoogle Scholar
  55. Ueda A & Krouse HR (1986) Direct conversion of sulphide and sulphate minerals to SO2 for isotope analyses. Geochem. J. 20: 209–212Google Scholar
  56. Van Stempvoort DR, Reardon EJ & Fritz P (1990) Fractionation of sulfur and oxygen isotopes in sulfate by soil sorption. Geochim. Cosmochim. Acta 54: 2817–2826Google Scholar
  57. Van Stempvoort DR, Fritz P & Reardon EJ (1992) Sulfate dynamics in upland forest soils, central and southern Ontario, Canada: stable isotope evidence. Appl. Geochem. 7: 159–175Google Scholar
  58. Van Stempvoort DR, Hendry MJ, Schoenau JJ & Krouse HR (1994) Sources and dynamics of sulfur in weathered till, Western Glaciated Plains of North America. Chem. Geol. 111: 35–56Google Scholar
  59. Wadleigh MA, Schwarcz HP & Kramer JR (1994) Sulphur isotope tests of seasalt correction factors in precipitation: Nova Scotia, Canada. Water, Air, Soil Pollut. 77: 1–16Google Scholar
  60. Yanagisawa F & Sakai H (1983) Thermal decomposition of barium sulfate -vanadium pentaoxide — silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements. Anal. Chem. 55: 985–987Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Bernhard Mayer
    • 1
  • Karl H. Feger
    • 2
  • Anette Giesemann
    • 3
  • Hans-J. Jäger
    • 3
  1. 1.Institut für HydrologieGSF Forschungszentrum für Umwelt und GesundheitOberschleißheimGermany
  2. 2.Institut für Bodenkunde und WaidernährungslehreAlbert-Ludwigs-UniversitätFreiburg i. Br.Germany
  3. 3.Institut für PlanzenökologieJustus Liebig UniversitätGießenGermany
  4. 4.Lehrstuhl für Sediment- und Isotopengeologie, Institut für GeologieRuhr-Universität Bochum, Universitätsstraße 150BochumGermany

Personalised recommendations