, Volume 34, Issue 2, pp 99–112

Stable carbon and oxygen isotopic compositions of recent charophyte oosporangia and water from Malham Tarn, U.K.: palaeontological implications

  • Timothy P. Jones
  • Steven M. Fortier
  • Allan Pentecost
  • Margaret E. Collinson


Charophyte oosporangia and water samples from a highly calcareous lake were measured for stable carbon and oxygen isotopic composition. The time period over which the oosporangia calcify is short, thus any biochemical relationship between the water and oosporangia"s calcite represents only one ‘time window’ (late Summer in Malham Tam). This important temporal restraint must also apply to interpretations of all fossil material measured. The δ18Oc of the charophyte oosporangia is deduced to be in equilibrium with the δ18Oω of the water for a given temperature. The δ13 Cc of the charophyte oosporangia was approximately 2.5 per mil lower than the δ13CDIC in the water we measured. With the release Of CO2 with phosphoric acid from the charophyte oosporangia, there was no significant difference in the δ18Oc values obtained, regardless of whether or not the carbonate was separated from the organic center, however δ13Cc values were marginally lower for carbonate plus organic center measurements. Our results indicate that fossil charophyte gyrogonites can be used to elucidate the geochemistry of the ancient water body in which they lived.

Key words

Chara charophytes gyrogonites carbon oxygen stable isotopes palaeolimnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews JE, Riding R & Dennis PF (1993) Stable isotope compositions of Recent freshwater cyanobacterial carbonates from the British Isles: local and regional environmental controls. Sedimentology 40: 303–314Google Scholar
  2. Berger J-P (1990) Floral changes in the molasse of western Switzerland (Oligo-miocene) palaeoclimatic implications. In: Knobloch E & Kvacek Z (Eds) Proceedings of the Symposium “Paleofloristic and Paleoclimatic Changes in the Cretaceous and Tertiary” 1989. Geological Survey, PragueGoogle Scholar
  3. Collinson ME, Singer RL & Hooker JJ (1993) Vegetational change in the latest Eocene of southern England. In: Planderova E, Konzalova M, Kvacek Z, Sitar V, Snopkova P & Subballyova D (Eds) Proceedings of the Symposium “Paleofloristic and Paleoclimatic Changes During Cretaceous and Tertiary” 1992. Geologicky ustav dionyza stura, BratislavaGoogle Scholar
  4. Covich A & Stuiver M (1974) Changes in oxygen 18 as a measure of long-term fluctuations in tropical lake levels and molluscan populations. Limnol. Oceanogr. 19: 682–690Google Scholar
  5. Craig H (1965) The measurement of oxygen isotope palaeotemperatures. In: Tongiorgi E (Ed) Stable Isotopes in Oceanographic Studies and Palaeotemperatures 3 (pp 1–16)Google Scholar
  6. Daley B & Edwards N (1990) The Bembridge Limestone (late Eocene) Isle of Wight, southern England: a stratigraphic revision. Tert. Res. 12: 51–64Google Scholar
  7. Epstein S & Mayeda T (1953) Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 4: 213–224Google Scholar
  8. Epstein S, Buchsbaum R, Lowenstam HA & Urey HC (1953) Revised Carbonate- water Isotopic Temperature Scale. Geol. Soc. Am. Bull. 64: 1315–1326Google Scholar
  9. Feist-Castel M (1977) Evolution of the charophyte floras in the Upper Eocene and Lower Oligocene of the Isle of Wight. Palaeontology 20: 143–157Google Scholar
  10. Ferguson D (1993) Plant taphonomic studies with special reference to Messel. Kaupia 2: 117–126Google Scholar
  11. Fritz P (1975) Late-Quaternary climatic trends and history of Lake Erie from stable isotope studies. Science 190: 267–269Google Scholar
  12. Fritz P & Poplawski S (1974) 18O and 13C in the shells of freshwater molluscs and their environments. Earth Plan. Sci. Lett. 24: 91–98Google Scholar
  13. Grossman EL & Ku T-L (1986) Carbon and oxygen isotopic fractionation in biogenic aragonite: temperature effects. Chem. Geol. (Isotope Geoscience Section) 59: 59–74Google Scholar
  14. Holmes PF (1965) The Natural History of Malham Tam. Fld. Stud. 2: 199–223Google Scholar
  15. Hooker JJ, Collinson ME, Van Bergen PF, Singer RL, De Leeuw JW & Jones TP (1995) Reconstruction of land and freshwater palaeoenvironments near the Eocene-Oligocene boundary, southern England. J. Geol. Soc. Lond. 152: 449–468Google Scholar
  16. Keith ML, Anderson GM & Eichler R (1964) Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochim. Cosmochim. Acta 28: 1757–1786Google Scholar
  17. Leitch A (1991) Calcification of the Charophyte oosporangium. In: Riding R (Ed) Calcareous Algae and Stromatolite (pp 204–216) Springer-Veriag BerlinGoogle Scholar
  18. Lund JWG (1961) The algae of the Malham Tam district. Fld. Stud. 1: 85–119Google Scholar
  19. McCrea JM (1950) On the isotope chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18: 849–857Google Scholar
  20. Mook WG & Vogel JC (1967) Isotopic equilibrium between shells and their environment. Science 159: 874–875Google Scholar
  21. Oana S & Deevey ES (1960) Carbon 13 in lake waters and its possible bearing on paleolimnology. Am. J. Sci. 258A: 253–272Google Scholar
  22. O"Connor J (1964) The Geology of the area around Malham Tam. Fld. Stud. 2: 53–82Google Scholar
  23. Pentecost A (1984) The growth ofChara globularis and its relationship to calcium carbonate deposition in Malham Tam. Fld. Stud. 6: 53–58Google Scholar
  24. Pitty AF (1971) Biological activity and the uptake and redeposition of calcium carbonate in natural water. Env. Lett. 1: 103–109Google Scholar
  25. Romanek, CS, Grossman, EL and Morse, JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim. Cosmochim. Acta 56: 419–430Google Scholar
  26. Sackett WM & Moore WS (1966) Isotopic variations of dissolved inorganic carbon. Chem. Geol. 1: 323–328Google Scholar
  27. Stuiver M (1970) Oxygen and carbon isotope ratios of freshwater carbonates as climatic indicators. J. Geophys. Res. 75: 5247–5257Google Scholar
  28. Talbot MR (1990) A review of the palaeohydrological interpretations of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol. (Isotope Geoscience Section) 80: 261–279Google Scholar
  29. Urey HC (1947) The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947: 562–581Google Scholar
  30. Wood RD & Imahori K (1965) A Revision of theCharaceae. J. Cramer, WeinheimGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Timothy P. Jones
    • 1
  • Steven M. Fortier
    • 3
  • Allan Pentecost
    • 5
  • Margaret E. Collinson
    • 6
  1. 1.Institut und Museum für Geologie und PaläontologieUniversität TübingenTübingenGermany
  2. 2.Department of Earth SciencesUniversity of Wales CardiffCardiffUK
  3. 3.Institut für Mineralogie, Petrologie und GeochemieUniversität TübingenTübingenGermany
  4. 4.Chemical & Analytical Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  5. 5.Division of Life SciencesKing"s College London, University of LondonLondonUK
  6. 6.Geology Department, Royal HollowayUniversity of LondonEgham Hill, EghamUK

Personalised recommendations