Journal of Statistical Physics

, Volume 86, Issue 1–2, pp 57–108 | Cite as

Ground states and flux configurations of the two-dimensional Falicov-Kimball model

  • Christian Gruber
  • Nicolas Macris
  • Alain Messager
  • Daniel Ueltschi


The Falicov-Kimball model is a lattice model of itinerant spinless fermions (“electrons”) interacting by an on-site potential with classical particles (“ions”). We continue the investigations of the crystalline ground states that appear for various filling of electrons and ions for large coupling. We investigate the model for square as well as triangular lattices. New ground states are found and the effects of a magnetic flux on the structure of the phase diagram are studied. The flux phase problem where one has to find the optimal flux configurations and the nuclei configurations is also solved in some cases. Finally we consider a model where the fermions are replaced by hard-core bosons. This model also has crystalline ground states. Therefore their existence does not require the Pauli principle, but only the on-site hard-core constraint for the itinerant particles.

Key Words

Falicov-Kimball model hard-core bosons flux phase triangular lattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Affleck and J. B. Marston, Large-n limit of Heisenberg Hubbard model: Implication for highT c superconductors,Phys. Rev. B 37:3374 (1988).Google Scholar
  2. 2.
    V. Bach, E. H. Lieb, and J. P. Solovej, Generalized Hartree-Fock theory and the Hubbard model,J. Stat. Phys. 76:3 (1994).Google Scholar
  3. 3.
    C. Borgs and J. Imbrie, A unified approach to phase diagrams in field theory and statistical mechanics,Commun. Math. Phys. 123:305 (1989).Google Scholar
  4. 4.
    C. Borgs, R. Kotecký, and D. Ueltschi, Low temperature phase diagrams for quantum perturbations of classical spin systems,Commun. Math. Phys. (1996).Google Scholar
  5. 5.
    N. Datta, R. Fernández, and J. Fröhlich, Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states,J. Stat. Phys. 84:455 (1996).Google Scholar
  6. 6.
    Z. Gajek, J. Jędrzejewski, and R. Lemański, Canonical phase diagrams of the 1-D Falicov-Kimball model atT=0,Physica A 223:175 (1996).Google Scholar
  7. 7.
    C. Gruber, Spinless Fermi gas on one-dimensional lattice: Riforous results,Helv. Phys. Acta 64:668 (1991).Google Scholar
  8. 8.
    C. Gruber, J. Iwański, J. Jędrzejewski, and P. Lemberger, Ground states of the spinless Falicov-Kimball model,Phys. Rev. B 41:2198 (1990).Google Scholar
  9. 9.
    C. Gruber, J. Jędrzejewski, and P. Lemberger, Ground states of the spinless Falicov-Kimball model II,J. Stat. Phys. 66:913 (1992).Google Scholar
  10. 10.
    C. Gruber, D. Ueltschi, and J. Jędrzejewski, Molecule formulation and the Farey tree in the one-dimensional Falicov-Kimball model,J. Stat. Phys. 76:125 (1994).Google Scholar
  11. 11.
    Y. Hasegawa, P. Lederer, T. M. Rice, and P. B. Wiegmann, Theory of electronic diamagnetism in two-dimensional lattices,Phys. Rev. Lett. 63:907 (1989).Google Scholar
  12. 12.
    T. Kennedy, Some rigorous results on the ground states of the Falicov-Kimball model,Rev. Math. Phys. 6:901 (1994).Google Scholar
  13. 13.
    T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order,Physica A 138:320 (1986).Google Scholar
  14. 14.
    T. Kennedy, E. H. Lieb, and B. S. Shastry, TheXY model has long range order for all spins and all dimensions greater than one,Phys. Rev. Lett. 61:2582 (1988).Google Scholar
  15. 15.
    R. Kotecký, Geometric representation of lattice models and large volume asymptotics, inProbability and Phase Transition, G. Grimmet, ed. (Kluwer, Dordrecht, 1994), p. 153.Google Scholar
  16. 16.
    G. Kotliar, Resonating valence bond and-wave superconductivity,Phys. Rev. B 37:3664 (1988).Google Scholar
  17. 17.
    J. L. Lebowitz and N. Macris, Long range order in the Falicov-Kimball model: extension of Kennedy-Lieb theorem,Rev. Math. Phys. 6:927 (1994).Google Scholar
  18. 18.
    P. Lemberger, Segregation in the Falicov-Kimball model,J. Phys. A 25:715 (1992).Google Scholar
  19. 19.
    E. H. Lieb, The flux phase of the half-filled band,Phys. Rev. Lett. 73:2158 (1994).Google Scholar
  20. 20.
    E. H. Lieb and M. Loss, Fluxes, Laplacians, and Kasteleyn's theorem,Duke Math. J. 71:337 (1993).Google Scholar
  21. 21.
    E. H. Lieb, M. Loss, and R. J. McCann, Uniform density theorem for the Hubbard model,J. Math. Phys. 34:891 (1993).Google Scholar
  22. 22.
    R. Łyżwa and Z. Domański, Falicov-Kimball model and its relation to the Hubbard model: Studies on clusters,Phys. Rev. B 50:11381 (1994).Google Scholar
  23. 23.
    N. Macris, Unpublished.Google Scholar
  24. 24.
    N. Macris and B. Nachtergale, On the flux phase conjecture at half-filling: An improved proof,J. Stat. Phys. (1996), to appear.Google Scholar
  25. 25.
    N. Macris and J. Ruiz, On the orbital magnetism of itinerant electrons, Preprint (1995).Google Scholar
  26. 26.
    A. Messager and S. Miracle-Solé, Low temperature states in the Falicov-Kimball model,Rev. Math. Phys. 8:271 (1996).Google Scholar
  27. 27.
    S. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems,Theoret. Math. Phys. 25:1185 (1975);26:39 (1976).Google Scholar
  28. 28.
    B. Simon, Universal diamagnetism of spinless boson systems,Phys. Rev. Lett. 36:804 (1976).Google Scholar
  29. 29.
    Ya. G. Sinai,Theory of Phase Transitions: Rigorous Results (Pergamon Press, Oxford, 1982).Google Scholar
  30. 30.
    G. I. Watson and R. Lemański, Ground state phase diagram of the two-dimensional Falicov-Kimball model,J. Phys. A: Condens. Matter 7:9521 (1995).Google Scholar
  31. 31.
    M. Zahradník, An alternate version to Pirogov-Sinai Theory,Commun. Math. Phys. 93:559 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Christian Gruber
    • 1
  • Nicolas Macris
    • 1
  • Alain Messager
    • 2
  • Daniel Ueltschi
    • 1
  1. 1.Institut de Physique ThéoriqueEPFLLausanneSwitzerland
  2. 2.Centre de Physique Théorique CNRSMarseille Cedex 9France

Personalised recommendations