Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ground states and flux configurations of the two-dimensional Falicov-Kimball model

  • 88 Accesses

  • 37 Citations

Abstract

The Falicov-Kimball model is a lattice model of itinerant spinless fermions (“electrons”) interacting by an on-site potential with classical particles (“ions”). We continue the investigations of the crystalline ground states that appear for various filling of electrons and ions for large coupling. We investigate the model for square as well as triangular lattices. New ground states are found and the effects of a magnetic flux on the structure of the phase diagram are studied. The flux phase problem where one has to find the optimal flux configurations and the nuclei configurations is also solved in some cases. Finally we consider a model where the fermions are replaced by hard-core bosons. This model also has crystalline ground states. Therefore their existence does not require the Pauli principle, but only the on-site hard-core constraint for the itinerant particles.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. Affleck and J. B. Marston, Large-n limit of Heisenberg Hubbard model: Implication for highT c superconductors,Phys. Rev. B 37:3374 (1988).

  2. 2.

    V. Bach, E. H. Lieb, and J. P. Solovej, Generalized Hartree-Fock theory and the Hubbard model,J. Stat. Phys. 76:3 (1994).

  3. 3.

    C. Borgs and J. Imbrie, A unified approach to phase diagrams in field theory and statistical mechanics,Commun. Math. Phys. 123:305 (1989).

  4. 4.

    C. Borgs, R. Kotecký, and D. Ueltschi, Low temperature phase diagrams for quantum perturbations of classical spin systems,Commun. Math. Phys. (1996).

  5. 5.

    N. Datta, R. Fernández, and J. Fröhlich, Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states,J. Stat. Phys. 84:455 (1996).

  6. 6.

    Z. Gajek, J. Jędrzejewski, and R. Lemański, Canonical phase diagrams of the 1-D Falicov-Kimball model atT=0,Physica A 223:175 (1996).

  7. 7.

    C. Gruber, Spinless Fermi gas on one-dimensional lattice: Riforous results,Helv. Phys. Acta 64:668 (1991).

  8. 8.

    C. Gruber, J. Iwański, J. Jędrzejewski, and P. Lemberger, Ground states of the spinless Falicov-Kimball model,Phys. Rev. B 41:2198 (1990).

  9. 9.

    C. Gruber, J. Jędrzejewski, and P. Lemberger, Ground states of the spinless Falicov-Kimball model II,J. Stat. Phys. 66:913 (1992).

  10. 10.

    C. Gruber, D. Ueltschi, and J. Jędrzejewski, Molecule formulation and the Farey tree in the one-dimensional Falicov-Kimball model,J. Stat. Phys. 76:125 (1994).

  11. 11.

    Y. Hasegawa, P. Lederer, T. M. Rice, and P. B. Wiegmann, Theory of electronic diamagnetism in two-dimensional lattices,Phys. Rev. Lett. 63:907 (1989).

  12. 12.

    T. Kennedy, Some rigorous results on the ground states of the Falicov-Kimball model,Rev. Math. Phys. 6:901 (1994).

  13. 13.

    T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order,Physica A 138:320 (1986).

  14. 14.

    T. Kennedy, E. H. Lieb, and B. S. Shastry, TheXY model has long range order for all spins and all dimensions greater than one,Phys. Rev. Lett. 61:2582 (1988).

  15. 15.

    R. Kotecký, Geometric representation of lattice models and large volume asymptotics, inProbability and Phase Transition, G. Grimmet, ed. (Kluwer, Dordrecht, 1994), p. 153.

  16. 16.

    G. Kotliar, Resonating valence bond and-wave superconductivity,Phys. Rev. B 37:3664 (1988).

  17. 17.

    J. L. Lebowitz and N. Macris, Long range order in the Falicov-Kimball model: extension of Kennedy-Lieb theorem,Rev. Math. Phys. 6:927 (1994).

  18. 18.

    P. Lemberger, Segregation in the Falicov-Kimball model,J. Phys. A 25:715 (1992).

  19. 19.

    E. H. Lieb, The flux phase of the half-filled band,Phys. Rev. Lett. 73:2158 (1994).

  20. 20.

    E. H. Lieb and M. Loss, Fluxes, Laplacians, and Kasteleyn's theorem,Duke Math. J. 71:337 (1993).

  21. 21.

    E. H. Lieb, M. Loss, and R. J. McCann, Uniform density theorem for the Hubbard model,J. Math. Phys. 34:891 (1993).

  22. 22.

    R. Łyżwa and Z. Domański, Falicov-Kimball model and its relation to the Hubbard model: Studies on clusters,Phys. Rev. B 50:11381 (1994).

  23. 23.

    N. Macris, Unpublished.

  24. 24.

    N. Macris and B. Nachtergale, On the flux phase conjecture at half-filling: An improved proof,J. Stat. Phys. (1996), to appear.

  25. 25.

    N. Macris and J. Ruiz, On the orbital magnetism of itinerant electrons, Preprint (1995).

  26. 26.

    A. Messager and S. Miracle-Solé, Low temperature states in the Falicov-Kimball model,Rev. Math. Phys. 8:271 (1996).

  27. 27.

    S. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems,Theoret. Math. Phys. 25:1185 (1975);26:39 (1976).

  28. 28.

    B. Simon, Universal diamagnetism of spinless boson systems,Phys. Rev. Lett. 36:804 (1976).

  29. 29.

    Ya. G. Sinai,Theory of Phase Transitions: Rigorous Results (Pergamon Press, Oxford, 1982).

  30. 30.

    G. I. Watson and R. Lemański, Ground state phase diagram of the two-dimensional Falicov-Kimball model,J. Phys. A: Condens. Matter 7:9521 (1995).

  31. 31.

    M. Zahradník, An alternate version to Pirogov-Sinai Theory,Commun. Math. Phys. 93:559 (1984).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gruber, C., Macris, N., Messager, A. et al. Ground states and flux configurations of the two-dimensional Falicov-Kimball model. J Stat Phys 86, 57–108 (1997). https://doi.org/10.1007/BF02180199

Download citation

Key Words

  • Falicov-Kimball model
  • hard-core bosons
  • flux phase
  • triangular lattice