Journal of Statistical Physics

, Volume 78, Issue 5–6, pp 1607–1617

Superexponential stability of KAM tori

  • Alessandro Morbidelli
  • Antonio Giorgilli
Short Communications

Abstract

We study the dynamics in the neighborhood of an invariant torus of a nearly integrable system. We provide an upper bound to the diffusion speed, which turns out to be of superexponentially small size exp[-exp(1/σ)], σ being the distance from the invariant torus. We also discuss the connection of this result with the existence of many invariant tori close to the considered one.

Key Words

Classical perturbation theory Hamiltonian dynamical systems KAM theory exponential stability Arnold stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold,Russ. Math. Surv. 18:9 (1963).Google Scholar
  2. 2.
    V. I. Arnold,Méthodes mathématiques de la méchanique classique (Mir, 1976).Google Scholar
  3. 3.
    G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn,Nuovo Cimento 79:201 (1984).Google Scholar
  4. 4.
    G. Benettin, L. Galgani, and A. Giorgilli,Celestial Mech. 37:1 (1985).Google Scholar
  5. 5.
    G. Benettin and G. Gallavotti,J. Stat. Phys. 44:293 (1986).Google Scholar
  6. 6.
    L. Chierchia and G. Gallavotti,Ann. Inst. H. Poincaré (Phys. Theor.) 60:1 (1994).Google Scholar
  7. 7.
    A. Giorgilli and L. GalganiCelestial Mech. 37:95 (1985).Google Scholar
  8. 8.
    A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, and C. Simó,J. Diff. Eqs. 20 (1989).Google Scholar
  9. 9.
    A. N. Kolmogorov,Dokl. Akad. Nauk SSSR 98:527 (1954).Google Scholar
  10. 10.
    A. J. Lichtenberg and M. A. Lieberman,Regular and Stochastic Motion (Springer-Verlag, New York, 1983).Google Scholar
  11. 11.
    P. Lochak,Uspekhi Math. Nauk (1992).Google Scholar
  12. 12.
    A. Morbidelli and A. Giorgilli,Celestial Mech. 55:131 (1993).Google Scholar
  13. 13.
    A. I. Neishtadt,PMM USSR 45:766–772 (1982).Google Scholar
  14. 14.
    N. N. Nekhoroshev,Russ. Math. Surv. 32:1 (1977).Google Scholar
  15. 15.
    N. N. Nekhoroshev,Trudy Sem. Petrovs. 5:5 (1979).Google Scholar
  16. 16.
    A. D. Perry and S. Wiggins,Physica D 71:102–121 (1994).Google Scholar
  17. 17.
    J. Pöschel,Math. Z. 213:187 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Alessandro Morbidelli
    • 1
  • Antonio Giorgilli
    • 2
  1. 1.Observatoire de la Côte d'AzurCNRSNice Cedex 4France
  2. 2.Dipartimento di Matematica dell'Università di Milano and Gruppo Nazionale di Fisica Matematica del CNRMilanItaly

Personalised recommendations