Advertisement

Journal of Statistical Physics

, Volume 78, Issue 5–6, pp 1429–1470 | Cite as

Finite-size scaling studies of one-dimensional reaction-diffusion systems. Part I. Analytical results

  • Klaus Krebs
  • Markus P. Pfannmüller
  • Birgit Wehefritz
  • Haye Hinrichsen
Articles

Abstract

We consider two single-species reaction-diffusion models on one-dimensional lattices of lengthL: the coagulation-decoagulation model and the annihilation model. For the coagulation model the system of differential equations describing the time evolution of the empty interval probabilities is derived for periodic as well as for open boundary conditions. This system of differential equations grows quadratically withL in the latter case. The equations are solved analytically and exact expressions for the concentration are derived. We investigate the finite-size behavior of the concentration and calculate the corresponding scaling functions and the leading corrections for both types of boundary conditions. We show that the scaling functions are independent of the initial conditions but do depend on the boundary conditions. A similarity transformation between the two models is derived and used to connect the corresponding scaling functions.

Key Words

Reaction-diffusion systems finite-size scaling nonequilibrium statistical mechanics coagulation model annihilation model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. v. Smoluchowski,Phys. Z. 17:557 (1916).Google Scholar
  2. 2.
    R. B. Stinchcombe, M. D. Grynberg, and M. Barma,Phys. Rev. E 47:4018 (1993).Google Scholar
  3. 3.
    M. Barma, M. D. Grynberg, and R. B. Stinchcombe,Phys. Rev. Lett. 70:1033 (1993).Google Scholar
  4. 4.
    K. Kang and S. Redner,Phys. Rev. A 30:2833 (1984).Google Scholar
  5. 5.
    K. Kang and S. Redner,Phys. Rev. Lett. 52:955 (1984).Google Scholar
  6. 6.
    B. Chopard, M. Droz, T. Karapiperis, and Z. Rácz,Phys. Rev. E 47:R40 (1993).Google Scholar
  7. 7.
    D. ben-Avraham and J. Köhler,J. Stat. Phys. 65:839 (1991).Google Scholar
  8. 8.
    P. G. de Gennes,J. Chem. Phys. 76:3316 (1982).Google Scholar
  9. 9.
    R. Kroon, H. Fleurent, and R. Sprik,Phys. Rev. E 47:2462 (1993).Google Scholar
  10. 10.
    R. Kopelman, S. J. Parus, and J. Prasad,Chem. Phys. 128:209 (1988).Google Scholar
  11. 11.
    V. Kuzovkov and E. Kotomin,Rep. Prog. Phys. 51:1479 (1988).Google Scholar
  12. 12.
    L. P. Kadanoff and J. Swift,Phys. Rev. 165:165 (1968).Google Scholar
  13. 13.
    P. Grassberger and M. Scheunert,Fortschr. Phys. 28: 547 (1980).Google Scholar
  14. 14.
    F. C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg,Ann. Phys. 230:250 (1994).Google Scholar
  15. 15.
    M. J. de Oliveira, T. Tomé, and R. Dickman,Phys. Rev. A 46:6294 (1992).Google Scholar
  16. 16.
    S. Sandow and G. Schütz,Europhys. Lett. 26:7 (1994).Google Scholar
  17. 17.
    I. Peschel, V. Rittenberg, and U. Schultze,Nucl. Phys. B 430:633 (1994).Google Scholar
  18. 18.
    F. C. Alcaraz and V. Rittenberg,Phys. Lett. B 314:377 (1993).Google Scholar
  19. 19.
    L.-H. Gwa and H. Spohn,Phys. Rev. Lett. 68:725 (1992).Google Scholar
  20. 20.
    L.-H. Gwa and H. Spohn,Phys. Rev. A 46:844 (1992).Google Scholar
  21. 21.
    C. R. Doering and D. ben-Avraham,Phys. Rev. Lett. 62:2563 (1989).Google Scholar
  22. 22.
    M. N. Barber, InPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. Lebowitz, eds. (Academic Press, New York, 1983), p. 145.Google Scholar
  23. 23.
    P. Christe and M. Henkel,Introduction to Conformal Invariance and Its Application to Critical Phenomena (Springer, Berlin, 1993), Chapter 3.Google Scholar
  24. 24.
    P. Argyrakis and R. Kopelman,Phys. Rev. A 41:2114 (1990).Google Scholar
  25. 25.
    M. Hoyuelos and H. O. Mártin,Phys. Rev. E 48:3309 (1993).Google Scholar
  26. 26.
    C. R. Doering and D. ben-Avraham,Phys. Rev. A 38:3035 (1988).Google Scholar
  27. 27.
    M. A. Burschka, C. R. Doering, and D. ben-Avraham,Phys. Rev. Lett. 63:700 (1989).Google Scholar
  28. 28.
    C. R. Doering and M. A. Burschka,Phys. Rev. Lett. 64:245 (1990).Google Scholar
  29. 29.
    J. Lin, C. R. Doering, and D. ben-Avraham,Chem. Phys. 146:355 (1990).Google Scholar
  30. 30.
    J. Lin,Phys. Rev. A 44:6706 (1991).Google Scholar
  31. 31.
    V. Privman,Phys. Rev. E 50:50 (1994).Google Scholar
  32. 32.
    J. Spouge,Phys. Rev. Lett. 60:871 (1988).Google Scholar
  33. 33.
    L. Peliti,J. Phys. A: Math. Gen. 19:L365 (1986).Google Scholar
  34. 34.
    M. Droz and L. Sasvári,Phys. Rev. E 48:R2343 (1993).Google Scholar
  35. 35.
    E. Barouch, B. M. McCoy, and M. Dresden,Phys. Rev. A 2:1075 (1970).Google Scholar
  36. 36.
    E. Barouch and B. M. McCoy,Phys. Rev. A 3:786 (1971).Google Scholar
  37. 37.
    M. Suzuki,Prog. Theor. Phys. 46:1337 (1971).Google Scholar
  38. 38.
    J. D. Johnson and B. M. McCoy,Phys. Rev. A 6:1613 (1972); M. Takahashi,Prog. Theor. Phys. 50:1519 (1973);51:1348 (1974); M. Lüscher,Nucl. Phys. B 117: 475 (1976); I. Affleck, InFields, Strings and Critical Phenomena, E. Brézin and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1990), p. 563.Google Scholar
  39. 39.
    C. R. Doering, M. A. Burschka, and W. Horsthemke,J. Stat. Phys. 65:953 (1991).Google Scholar
  40. 40.
    D. ben-Avraham, M. A. Burschka, and C. R. Doering,J. Stat. Phys. 60:695 (1990).Google Scholar
  41. 41.
    T. D. Schultz, D. C. Mattis, and E. H. Lieb,Rev. Mod. Phys. 36:856 (1964).Google Scholar
  42. 42.
    E. Lieb, T. Schultz, and D. Mattis,Ann. Phys. (NY)16:407 (1961).Google Scholar
  43. 43.
    H. Hinrichsen and V. Rittenberg,Phys. Lett. B 275:350 (1992).Google Scholar
  44. 44.
    A. A. Lushnikov,Sov. Phys. JEPT 64:811 (1986).Google Scholar
  45. 45.
    J. G. Amar and F. Family,Phys. Rev. A 41:3258 (1990).Google Scholar
  46. 46.
    L. Braunstein, H. O. Mártin, M. D. Grynberg, and H. E. Roman,J. Phys. A 25: L255 (1992).Google Scholar
  47. 47.
    V. Privman,J. Stat. Phys. 69:629 (1992).Google Scholar
  48. 48.
    V. Privman,J. Stat. Phys. 72:845 (1993).Google Scholar
  49. 49.
    B. P. Lee,J. Phys. A 27:2633 (1994).Google Scholar
  50. 50.
    M. A. Burschka,Europhys. Lett. 16:537 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Klaus Krebs
    • 1
  • Markus P. Pfannmüller
    • 2
  • Birgit Wehefritz
    • 1
  • Haye Hinrichsen
    • 3
  1. 1.Physikalisches InstitutUniversität BonnBonnGermany
  2. 2.Institut für Theoretische PhysikUniversität HannoverHannoverGermany
  3. 3.Fachbereich PhysikFreie Universität BerlinBerlinGermany

Personalised recommendations