Biogeochemistry

, Volume 35, Issue 1, pp 75–139 | Cite as

Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences

  • R. W. Howarth
  • G. Billen
  • D. Swaney
  • A. Townsend
  • N. Jaworski
  • K. Lajtha
  • J. A. Downing
  • R. Elmgren
  • N. Caraco
  • T. Jordan
  • F. Berendse
  • J. Freney
  • V. Kudeyarov
  • P. Murdoch
  • Zhu Zhao-Liang
Article

Abstract

We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr−1 out of a total for the entire North Atlantic region of 13.1 Tg yr−1 . On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km−2 yr−1.

Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the major control over river nitrogen export in some regions such as the northeastern U.S.

Using data from relatively pristine areas as an index of change, we estimate that riverine nitrogen fluxes in many of the temperate regions have increased from pre-industrial times by 2 to 20 fold, although some regions such as northern Canada are relatively unchanged. Fluxes from the most disturbed region, the North Sea drainages, have increased by 6 to 20 fold. Fluxes from the Amazon basin are also at least 2 to 5 fold greater than estimated fluxes from undisturbed temperate-zone regions, despite low population density and low inputs of anthropogenic nitrogen to the region. This suggests that natural riverine nitrogen fluxes in the tropics may be significantly greater than in the temperate zone. However, deforestation may be contributing to the tropical fluxes. In either case, projected increases in fertilizer use and atmospheric deposition in the coming decades are likely to cause dramatic increases in nitrogen loading to many tropical river systems.

Key words

anthropogenic atmospheric deposition eutrophication fertilizer nitrogen nitrogen budget nitrogen fixation N:P ratio phosphorus pristine rivers temperate tropical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber JD, Magill A, Boone R, Melillo JM, Steudler P & Bowden R (1993) Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol. Appl. 3: 156–166Google Scholar
  2. Aber JD, Nadelhoffer KJ, Steudler P & Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Biosci. 39: 378–386Google Scholar
  3. Admiraal W & Van Der Vlugt JC (1988) High rates of denitrification in a storage reservoir fed with water of the river Rhine. Arch. Hydrobiol. 113: 593–605Google Scholar
  4. Agence de l'Eau Loire-Bretagne (1989) Annuaire de la qualite des eaux de surfaceGoogle Scholar
  5. Ahlgren L, Basso E & Jovel R (1969) Preliminary evaluation of the water balance in the Central American Isthmus. In: Laycock AH, Francisco M & Fisher T (Ed) Water Balance in North America (pp 288–298). Amer. Water Res. Assn. Urbana, ILGoogle Scholar
  6. Alexander RB, Murdoch PS & Smith R (1996) Streamflow-induced variations in nitrate flux in tributaries to the Atlantic coastal zone. Biogeochem. In pressGoogle Scholar
  7. Allardi J & Billen G (1993) Rapport de synthese PIREN-Seine Vol 1 Fontionnnement de l'ecosysteme. Seine CNRS, ParisGoogle Scholar
  8. Anderssen JM (1977) Rates of denitrification of undisturbed sediment for six lakes as a funciton of nitrate concentration, oxygen, and temperature. Arch. Hydrobiol. 80: 147–159Google Scholar
  9. Andreae MO, Talbot RW Berresheim H & Beecher KM (1990) Precipitation chemistry in central Amazonia. J. Geophys. Res. 95: 16987–16999Google Scholar
  10. Arheimer B & Wittgren HB (1994) Modelling the effects of wetlands on regional nitrogen transport. Ambio 23: 378–386Google Scholar
  11. Baldwin LB, Frere MH, Hjelmfelt AT, McGregor GS, Petri LR, Wirth TL, Storch W & Kelman S (1977) Quality aspects of agricultural runoff and drainage. J. Irrig. Drain Div. 103 (IR4): 475–495Google Scholar
  12. Barry DAJ, Goorahoo D & Goss MJ (1993) Estimation of nitrate concentrations in groundwater using a whole farm nitrogen budget. J. Environ. Qual. 22: 767–775Google Scholar
  13. Bashkin VN (1987) Landscape agrogeochemical mass-balance of nitrogen in agricultural regions In Moldan B & Paces T (Ed) GEOMON: International Workshop on Geochemistry and Monitoring in Representative Basins (pp 105–107). Geological Survey, PragueGoogle Scholar
  14. Belamie R (1980) Influence of cropping practices and hydrological factors on the variation of nitrates in the discharges from a representative basin in the Paris region. Proceedings of the Helsinski Symposium IAMS IAM publ 130Google Scholar
  15. Bentley BJ, Herrera R, Amason JT, Molina Buck JS, Castilleja R, Garcia LE, Jordan CF, Russell CE, Salati E & Sanhueza E (1982) Report of the working group on Latin American forests. Plant and Soil 67: 415–420Google Scholar
  16. Berish CW (1983) Roots, soil, litter and nutrient changes in simple and diverse tropical successional ecosystems. Dissertation, Univ of Florida, GainesvilleGoogle Scholar
  17. Berner EK & Berner RA (1987) The Global Water Cycle. Prentice-Hall, New JerseyGoogle Scholar
  18. Bertilsson G (1988) Lysimeter studies of nitrogen leaching and nitrogen balance as affected by agricultural practices. Acta Agric. Scand. 38: 3–11Google Scholar
  19. Billen G (1990) N-budget of the major rivers discharging into the continental coastal zone f the North Sea: The nitrogen paradox. In: Lancelot C, Billen G & Barth H (Eds) Eutrophication and Algal Bloom in North Sea Zones, the Baltic and Adjacent Areas: Prediction and Assessment of Prevention Actions (pp 153–172). Water Pollution Research Reports, Commission of the European CommunitiesGoogle Scholar
  20. Billen G, Dessery S, Lancelot C & Meybeck M (1989) Seasonal and inter-annual variations of nitrogen diagenesis in the sediments of a recently impounded basin. Biogeochemistry 8 (1): 73–100Google Scholar
  21. Billen G, Garnier J & Hanset P (1994) Modelling phytoplankton development in whole drainage networks: The RIVERSTRAHLER model applied to the Seine rive system. Hydrobiol. 289: 119–137Google Scholar
  22. Billen G, Lancelot C & Meybeck M (1991) N, P, and Si retention along the aquatic continuum from land to ocean. In: Matoura RFC, Martin JM & Wollast R (Ed) Ocean Margin Processes in Global Change (pp 19–44) . Wiley & Sons, ChichesterGoogle Scholar
  23. Billen G, Somville M, DeBecker E & Servais P (1985) A nitrogen budget of the Scheldt hydrographical basin. Neth J. Sea Res. 19: 223–230Google Scholar
  24. Binkley D, Sollins P, Bell R, Sachs D & Myrold D (1992) Biogeochemistry of adjacent conifer and alder-conifer stands. Ecol. 73: 2022–2033Google Scholar
  25. Blanck FC (1955) Handbook of Food and Agriculture. Reinhold Publishing Co., New York, New YorkGoogle Scholar
  26. Bock BR (1984) Efficient use of nitrogen in cropping systems. In: Hauck RD (Ed) Nitrogen in Crop Production (pp 273–294). Amer. Soc. Agron, Madison, WIGoogle Scholar
  27. Boring LR, Swank WT, Waide JB & Henderson GS (1988) Sources, fates and impacts of nitrogen inputs to terrestrial ecosystems: review and synthesis. Biogeochem. 6: 119–159Google Scholar
  28. Bormann FH, Likens GE & Melillo JM (1977) Nitrogen budget for and aggrading northern hardwood forest ecosystem. Science 196: 981–983Google Scholar
  29. Bowman WD, Theodose TA & Fisk MC (1995) Physiological and production responses of plant growth forms to increases in limiting resources in alpine tundra: implications for differential community response to environmental change. Oecologia 101 (2): 217–227Google Scholar
  30. Brunet RC, Pinay G, Gazelle F & Roques L (1994) Role of the floodplain and riparian zone in suspended matter and nitrogen retention in the Adour River, south-west France. Regulated Rivers Research and Management 9: 55–63Google Scholar
  31. Burton AJ, Pregitzer KS & MacDonald NW (1993) Foliar nutrients in sugar maple forests along a regional pollution-climate gradient. Soil Sci. Soc. Amer. 57 (1993): 1619–1628Google Scholar
  32. Calderoni A, Mosello R & Tartari G (1978) P, N and Si budget in Lago Mergozzo. Verh. Int. Verein. Limnol. 20: 1033–1037Google Scholar
  33. Chatarpaul L, Robinson JB & Kaushik NK (1980) Effects of tubificid worms on denitrification and nitrification in stream sediment. Can. J. Fish. Aquat. Sci. 37: 656–663Google Scholar
  34. Chaussepied M, Amal O, Grossel H, Delattre JM, Wartel M (1989) Le littoral de la Region Nord-Pas de Calais, Apports a la Mer IFREMER, rapp Sci Techn No 15Google Scholar
  35. Chesterikoff A, Garban B, Billen G & Poulin M (1992) Inorganic nitrogen dynamics in the River Seine downstream from Paris (France). Biogeochem. 17: 147–164Google Scholar
  36. Clair TA, Pollock TL & Ehrman JM (1994) Exports of carbon and nitrogen from river basins in Canada's Atlantic provinces. Global Biogeochem. Cycles. 8: 441–450Google Scholar
  37. Cole JJ, Peierls BL, Caraco NF & Pace ML (1993) Nitrogen laoding of rivers as a human-driven process. In: McDonnell MJ & Pickett STA (Eds) Humans as Components of Ecosystems: The Ecology of Subtle Human Effects and Populated Areas (pp 141–157). Springer-Verlag, New York, NYGoogle Scholar
  38. Comite d'etude sur le fleuve Saint-Laurent (1978) Rapport d'etude sur le troncon en alval du Montmagny Vol 4 L'Editeur officiel du Quebec, QuebecGoogle Scholar
  39. Commission of the European Communities (1982) Groundwater Resources of the European Communities. Schafer, HanoverGoogle Scholar
  40. Crabtree RC & Bazzaz FA (1993) Seedling response of four birch species to simulated nitrogen deposition: ammonium vs nitrate. Ecol. Appl. 3: 315–321Google Scholar
  41. Crippen JR (1969) Water balance patterns in the Continental United States. In: Laycock AH, Francisco M & Fisher T (Ed) Water Balance in North America (pp 55–61). American Water Resources Assn, Urbana, ILGoogle Scholar
  42. De Becker E (1986) Apports, transferts, et transformations de l'azote dans les reseaux hydrographiques. Developpement d'une methodologie generale et applications au reseau belge. These Faculte des Sciences, Univ. Libre de BruxellesGoogle Scholar
  43. De Becker E, Billen G & Servais P (1984) Evaluation de la contamination des eaux de surface en nutriments (N,P, K) par drainage des sols agricoles en Belgique. Rev. Agric. 37: 117–136Google Scholar
  44. Degens ET, Kempe S & Ittekot V (1984) Monitoring carbon in world rivers. Envir. 26: 29–33Google Scholar
  45. del Rio F & Wilson A (1969) Streamflow distribution patterns in Mexico. In: Laycock AH, Francisco M & Fisher T (Eds) Water Balance in North America (pp 62–73). American Water Resources Assn Urbana, ILGoogle Scholar
  46. Dentener FJ & Crutzen PJ (1996) A three dimensional model of the global ammonia cycle. J. of Atmos. Chem. In pressGoogle Scholar
  47. Devito KJ, Dillon PJ & Lazerte BD (1989) Phosphorus and nitrogen retention in five Precambrian shield wetlands. Biogeochem. 8: 185–204Google Scholar
  48. Devol AH, Richey JE & Forsberg BR (1991) Phosphorus in the Amazon River mainstream: concentrations, forms, and transport to the ocean. In: Tiessen H, Lopez-Hemandez D & Salcedo IH askatoon, CaGoogle Scholar
  49. Dillon PJ & Molot LA (1990) The role of ammonium and nitrate retention in the acidification of lakes and forested catchment. Biogeochem. 11: 23–44Google Scholar
  50. Driscoll CT, Yatsko CP & Unangst FJ (1987) Longitudinal and temporal trends in the water chemistry of the North Branch of the Moose River. Biogeochem. 3: 37–61Google Scholar
  51. Downing JP, Meybeck M, Orr JC, Twilley PR & Scharpenseel HW (1993) Land and water interface zones. Water, Air & Soil Pollution 70: 123–137Google Scholar
  52. Duce RA, Liss PS , Merrill JT , Atlans EL, Buat-Menard P, Hicks BB, Miller JM, Prospero JM, Atimoto R, Church TM , Ellis W, Galloway JN, Hansen L, Jickells TD, Knap AH, Reinhardt KH, Schneider B, Soudine A, Tokos JJ, Tsunogai S, Wollast R & Ahou M (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem. Cycles 5: 193–259Google Scholar
  53. Durka W, Schulze ED, Gebauer G & Voerkelius S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372: 765–767Google Scholar
  54. Duvigneaud P & Denaeyer-DeSmet S (1971) Cycle des éléments biogenes dans les écosystemes forestiers d'Europe. In: UNESCO: Productivity of forest ecosystem, Actes Coll. Brussels. Ecol. & Cons. 4:527–542Google Scholar
  55. Edwards RW & Rolley HLJ (1965) Oxygen consumption of river muds. J. Ecol. 53 (1): 1–19Google Scholar
  56. Emmett BA, Reynolds B, Stevens PA, Norris DA, Hughes S, Gorres J & Lubrecht I (1993) Nitrate leaching from afforested Welsh catchments — interactions between stand age and nitrogen deposition. Ambio 22: 386–394Google Scholar
  57. ERU (1991) Riverine inputs in 1990. Environmental Research Unit, St Martin's House, Waterloo Road, Dublin 4, IrelandGoogle Scholar
  58. Espenshade E (1990) Goode's World Atlas 18th edition. Rand McNally, ChicagoGoogle Scholar
  59. Ewel JJ, Erish CB, Brown B, Price N & Raich J (1981) Slash and bum impacts on a Costa Rican wet forest site. Ecol. 62: 816–829Google Scholar
  60. Fisher DC & Oppenheimer MP (1991) Atmospheric nitrogen deposition and the Chesapeake Bay estuary. Ambio 20: 102–108Google Scholar
  61. Fleischer S, Hamrin S, Kindt Rydberg L & Stibe L (1987) Coastal eutrophication in Sweden: reducing nitrogen in land runoff. Ambio 16: 246–251Google Scholar
  62. Fondation Roi Baudouin (1992) Nitrates et qualite des Eaus In Agriculture et EnvironnementGoogle Scholar
  63. Gabric AJ & Bell PRF (1993) Review of the effects of non-point nutrient loading on coastal ecosystems. Aust. J. Mar. Freshwater Res. 44: 261–83Google Scholar
  64. Galicka W & Penczak T (1989) Total N and P budgets in the lowland Sulejow Reservoir. Arch. Hydrobiol. 117: 177–190Google Scholar
  65. Galloway JN, Levy II H & Kasibhatla PS (1994) Year 2020: consequences of population growth and development on deposition of oxidized nitrogen. Ambio 23: 120–123Google Scholar
  66. Galloway JN, Likens GE, Keene WC, Gonzales J & Yancz C (1993) The composition of precipitation in a remote Southern Hemisphere location: Torres del Paine National Park, Chile. In: Franklin, Johnson, Behl & Iriarte (Eds) A Patagonia Gem: The Ecology and Natural History of a World Biosphere Reserve Santiago, ChileGoogle Scholar
  67. Galloway IN, Schlesinger WH, Levy, II V, Michaels A & Schnoor JL (1995) Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochem. Cycles 9 (2): 235–252Google Scholar
  68. Garnier J, Billen G, Sanchez N, Leporcq B & Hanset P (1994) Etude du fonctionnement écologique du barrage réservoir de la Marne (Lac de Der). Bilans biogéochimiques et modelisation du fonctionnement du reservoir. Rapport PIREN-Seine, théme "Corridor Fluvial." CNRS, ParisGoogle Scholar
  69. GESAMP (1987) Land/sea boundary flux of contaminants: contributions from rivers report and studies #32 of the IMCO/FAO/UNESCO/WHOM/WHO/IAEA/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution UNESCO, ParisGoogle Scholar
  70. Gold AJ, DeRagon WR, Sullivan WM & Lemunyon JL (1990) Nitrate nitrogen losses to groundwater from rural and suburban land uses. J. Soil Water Conserv. 45: 305–310Google Scholar
  71. Gundersen P & Bashkin V (1994) Nitrogen cycling. In: Moldan B & Cerny J (pp 255–283). Wiley and Sons, ChichesterGoogle Scholar
  72. Hauhs M, Rost-Siebert K, Ragen G, Paces T & Vigerust B (1989) Summary of European data. In: Malanchuk JL & Nilsson J (Eds) The Role of Nitrogen in the Acidification of Soils and Surface Waters. Miljorapport 1989: 10 (NORD 1989: 92), Nordic Council of Ministers, CopenhagenGoogle Scholar
  73. Haycock NE, Pinay G & Walker C (1993) Nitrogen retention in river corridors: european pespective. Ambio 22: 340–346Google Scholar
  74. Hedin LO, Armesto JJ & Johnson AH (1995) Patterns of nutrient loss from unpolluted, oldgrowth temperate forests: evaluation of biogeochemical theory. Ecol. 76: 493–509Google Scholar
  75. Henderson GS, Swank WT, Waide JB & Grier CC (1978) Nutrient budgets of Appalaichian and Cascade region watersheds: A comparison. Forest Sco. 24: 385–397Google Scholar
  76. Henriksen A & Brakke DF (1988) Increasing contributions of nitrogen to the acidity of surface waters in Norway. Water, Air and Soil Poll. 42 (1–2): 183–202Google Scholar
  77. Hill AR (1983) Denitrification: Its importance in a river draining an intensively cropped watershed. Agri., Ecosys. & Envir. 10: 47–62Google Scholar
  78. HMSO (1992) Digest of environmental protection and water statistics 1991 Department of the Environment. Her Majesty's Stationery Office No 15Google Scholar
  79. HMSO (1994) Digest of environmental protection and water statistics 1992 Department of the Environment. Her Majesty's Stationery Office No 16Google Scholar
  80. Holtan G, Berge D, Holtan H & Hopen T (1992a) Paris convention Annual report on direct and riverine inputs to Norwegian coastal waters during the year 1991 A Principles, results and discussion. Norwegian Institute for Water Research Report No 488A/92Google Scholar
  81. Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Ecol. & Syst. 19: 89–110Google Scholar
  82. Howarth RW, Jensen H, Marino R & Postma H (1995) Transport to and processing of P in near-shore and oceanic waters. In: Tiessen H (Ed) Phosphorus in the Global Environment Transfers, Cycles and Management SCOPE 54 (pp 323–345). Wiley & Sons,ChichesterGoogle Scholar
  83. Ibrekk HO, Molvaer J & Faafeng B (1991) Nutrient loading to Norwegian coastal waters and its contribution to the North Sea. Wat. Sci. Tech. 24: 239–249Google Scholar
  84. Institute of Hydrology/British Geological Survey (1993) Hydrologic Data United Kingdom Hydrometric Register and Statistics 1986–90. National Environment Research Council/Institute of Hydrology, Wallingford, OxonGoogle Scholar
  85. Isermann K (1993) Territorial, continental, and global aspects of C,N, P and S emissions from agricultural ecosystems. In: Wollast R, Mackenzie FT & Chou L (Eds) Interactions of C, N, P, and S Biogeochemical Cycles and Global Change, NATO ASI Series 14 (pp 79–121). Springer Verlag, BerlinGoogle Scholar
  86. Ittekot V & Zhang S (1989) Pattern of particulate nitrogen transport in world rivers. Global Biogeochem. Cycles 3 (4): 383–391Google Scholar
  87. Jansson M, Andersson R, Berggren H & Leonardson L (1994) Wetlands and lakes as nitrogen traps. Ambio. 23: 320–325Google Scholar
  88. Jaworski N & Howarth RW (1996) Preliminary estimates of the pollutant load and fluxes into the northeast shelf LME. In: Sherman K (Ed) The Northeast Shelf Large Marine Ecosystem. Blackwell, Cambridge, MA. In pressGoogle Scholar
  89. Jaworski NA, Groffman PM, Keller AA, Prager JC (1992) A watershed nitrogen and phosphorus balance: The upper Potomac River basin. Estuaries 15: 83–95Google Scholar
  90. Johnson DW (1992) Nitrogen retention in forest soils. J. Envir. Qual. 21: 1–12Google Scholar
  91. Johnston CA, Bubenzer GD, Lee GB, Madison FW, McHenry JR (1984) Nutrient trapping by sediment deposition in a seasonally flooded lakeside wetland. J. Environ. Qual. 13: 283–290Google Scholar
  92. Jordan C, Caskey W, Escalante G, Herrera R, Montagnini F, Todd R & Uhl C (1982) The nitrogen cycle in a "Terra Firme" rainforest on oxisol in the Amazon territory of Venezuela. Plant and Soil 67: 325–332Google Scholar
  93. Jordan TE & Weller DE (1996) Human contributions to terrestrial N flux. BioScience. In pressGoogle Scholar
  94. Justic N, Rabalais NN, Turner RE & Dortch Q (1995) Changes in nutrient structure of riverdominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuarine, Coastal & Shelf Science 40: 339–356Google Scholar
  95. Jürgens-Gshwind S & Jung J (1979) Results of lysimeter trials at the Limburgerhof facility 1927–1977: The most important findings from 50 years of experiments. Soil Sci. 127 (3): 146–160Google Scholar
  96. Kaushik NK & Robinson JB (1976) Preliminary observations on nitrogen transport during summer in a small spring-fed Ontario stream. Hydrobiol. 49 (1): 59–63Google Scholar
  97. Keeney DR (1979) A mass balance of nitrogen in Wisconsin. Wisconsin Academy of Sciences, Arts and Letters 67: 95–102Google Scholar
  98. Keller M & Reiners WA (1994) Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochem. Cycles 8 (4): 399–410Google Scholar
  99. Keller M, Kaplan WA & Wofsy SC (1986) Emissions of N20, CH4 and CO2 from tropical soils. J. Geophys. Res. 91: 11791–11802Google Scholar
  100. Keller M, Veldkamp E & Weitz AM (1993) Effect of pasture age on soil trace gas emissions from a deforested area of Costa Rica. Nature 365: 244–247Google Scholar
  101. Kelly CA, Rudd JWM & Schindler DW (1990) Acidification by nitric acid: future considerations. Water, Air, and Soil Poll. 50: 49–61Google Scholar
  102. Kelly CA, Rudd JWM, Hesslein RH, Schindler DW, Dillon PJ, Driscoll CT, Gherini SA & Hecky RE (1987) Prediction of biological acid neutralization in acid-sensitive lakes. Biogeochem. 3: 129–141Google Scholar
  103. Kempe S, Pettine M & Cauwet G (1991) Biogeochemistry of European rivers. In: Degens ET, Kempe S & Richey JE (Eds) Biogeochemistry of Major World Rivers SCOPE 42 (pp 169–211). John Wiley and Sons, New YorkGoogle Scholar
  104. Khalil MAK & Rasmussen RA (1992) The global sources of nitrous oxide. J. Geophys. Res. 97: 14651–14660Google Scholar
  105. Kohl DH, Shearer GB & Commoner B (1971) Fertilizer nitrogen: contribution to nitrate in surface water in a combelt watershed. Science 174: 1331–1334Google Scholar
  106. Kolenbrander GJ (1973) Impact of fertilizers and agricultureal waste products on the quality of waters. OECD Paris, 72 ppGoogle Scholar
  107. Kolenbrander GJ, (1969) Nitrate content and nitrogen loss in drainwater. Neth. J. Agric. Sci. 17: 246–255Google Scholar
  108. Krug A (1993) Drainage history and land use pattern of a Swedish river system — their importance for understanding nitrogen and phosphorus load. Hydrobio. 251: 285–296Google Scholar
  109. Lajtha K, Seely B & Valiela I (1995) Retention and leaching losses of atmospherically-derived nitrogen in the aggrading coastal watershed of Waquoit flay, MA. Biogeochem. 28 (1): 33–54Google Scholar
  110. Larsson U, Elmgren R & Wulff F (1985) Eutrophication and the Baltic Sea: Causes and consequences. Ambio 14 (1): 9–14Google Scholar
  111. Laycock AH (1987) The amount of Canadian water and its distribution. Can. Bull. Fish Aquat. Sci. 215: 13–42Google Scholar
  112. Lesack LFW, Hecky RE & Melack JM (1984) Transport of carbon, nitrogen, phosphorus, and major solutes in the Gambia River, West Africa. Limnol. Oceanogr. 29: 816–830Google Scholar
  113. Levy II H, Kasibhatla PS & Moxim WJ (1996) Global distribution of tropospheric NOy, past, present, and future. In preparationGoogle Scholar
  114. Levy II H & Moxim WJ (1989) Simulated global distribution and deposition of reactive nitrogen emitted by fossil fuel combustion, Tellus 41B: 256–271Google Scholar
  115. Lewis WM & Saunders, III JF (1989) Concentration and transport of dissolved and suspended substances in the Orinoco river. Biogeochem. 7: 103–240Google Scholar
  116. Lewis WM (1981) Precipitation chemistry and nutrient loading by precipitation in a tropical watershed. Wat. Res. Res. 17: 169–181Google Scholar
  117. Lewis WM (1986) Nitrogen and phosphorus runoff losses from. a nutrient-poor tropical moist forest. Ecol. 67: 1275–1282Google Scholar
  118. Lowrance R & Leonard RA (1988) Stramfiow nutrient dynamics on coastal plain watersheds. J. Env. Qual. 17: 734–740Google Scholar
  119. Lowrance R, Todd R, Fail J, Hendrickson O, Leonard R & Asmussen L (1984) Riparian foreests as nutrient filters in agricultural watersheds. Biosci. 34: 374–377Google Scholar
  120. Lucotte M (1989) Phosphorus reservoirs in the St Lawrence upper estuary. Can. J. Fish Aquat. Sci. 46: 59–65Google Scholar
  121. Maidment DR (1993) Handbook of Hydrology. McGraw-Hill, New YorkGoogle Scholar
  122. Mariotti A (1982) Apports de la géochimie isotopique à la connaissance du cycle de l'azote. Thesis, Univ Paris VIGoogle Scholar
  123. Mason JW, Wegner GD, Quinn GI & Lange EI (1990) Nutrient loss via groundwater discharge from small watersheds in southern and south central Wisconsin. J. Soil Water Cons. 1990: 327–331Google Scholar
  124. Matson PA & Vitousek PM (1990) Ecosystem approach to a global nitrous oxide budget. Biosci. 40 (9): 667–672Google Scholar
  125. Matson PA, Vitousek PM, Ewel JJ, Mazzarino MJ & Robertson GP (1987) Nitrogen transformations following tropical forest felling and burning on a volcanic soil. Ecol. 68 (3): 491–502Google Scholar
  126. Matthews E (1994) Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia. Global Biogeochem. Cycles 8 (4): 411–440Google Scholar
  127. McClain ME, Richey JE & Pimentel TP (1994) Groundwater nitrogen dynamics at the terrestrial-lotic interface of a small catchment in the central Amazon Basin. Biogeochem. 27: 113–127Google Scholar
  128. McNulty SG, Aber JD & Boone RD (1991) Spatial changes in forest floor and foliar chemistry of spruce-fir forests across New England. Biogeochem. 14: 13–29Google Scholar
  129. Messer J & Brezonik PL (1983) Agricultural nitrogen model: A tool for regional environmental management. Environ. Man. 7: 177–187Google Scholar
  130. Meybeck M (1982) Carbon, nitrogen and phosphorus transport by world rivers. Am. J. Sci. 282: 401–450Google Scholar
  131. Meybeck M (1988) How to establish and use world budgets of riverine materials. In: Lerman A & Meybeck M (Eds) Physical and Chemical Weathering in Geochemical Cycles (pp 247–272) Kluwer Academic Publishers, DordrechtGoogle Scholar
  132. Meybeck M (1993) C, N, P, and S in rivers: from sources to global inputs. In: Wollast R, Mackenzie FT & Chou L (Eds) Interaction of C, N, P, and S Biogeochemical Cycles and Global Change (pp 163–193). Springer-Verlag, BerlinGoogle Scholar
  133. Meybeck M (1994) Les lacs et leur bassin. In: Pourriot R & Meybeck M (Eds) Limnologie Générale (pp 6–59). MassonGoogle Scholar
  134. Meybeck M (1995) Global distribution of lakes. In: Lerman A, Imboden DM & Gat JR (Eds) Physics and Chemistry of Lakes (pp 1–35). Springer-Verlag, BerlinGoogle Scholar
  135. Meybeck M, Chapman DV & Helmer R (1989) Global Freshwater Quality: a first assessment. World Health Organization/United Nations Environment Programme Basil Blackwell, Inc., Cambridge, MAGoogle Scholar
  136. Michaels AF, Olson D, Sarmiento J, Ammerman J, Fanning K, Jahnke R, Knap AH, Lipschultz F & Prospero J (1996) Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean. Biogeochem. 35: 75–139Google Scholar
  137. Muller G & Forstner U (1968) General relationship between suspended sediment concentration and water discharge in the Alpenrhein and some other rivers. Nature 217: 244–245Google Scholar
  138. Murdoch PS & Stoddard JL (1992) The role of nitrate in the acidification of streams in the Catskill Mountains of New York. Wat. Res. Res. 28: 2707–2720Google Scholar
  139. National Research Council (1993) Managing Wastewater in Coastal Urban Areas. Committee on Wastewater Management for Coastal Urban Areas. National Academy Press, Washington, DCGoogle Scholar
  140. Naves J, Bousquet G, Leroy P, Hubert P & Vilagines R (1991) Evolution de la qualite de l'eau de la Sein a Ivry sur Sein (France) de 1887 a 1986. Comptes Rendus de l'Atelier International UNESCO/AISM/ENIT Application des modeles mathematiques a P evaluation des modifications de la qualite de P eau (pp 35–44). Tunis 1990, ENIT, Tunis Neff JC, Bowman WD, Holland GA, Fisk MC & Schmidt SK (1994) Fluxes of nitrous oxide and methane from nitrogen-amended soils in a Colorado alpine ecosystem. Biogeochem. 27(1): 23–33Google Scholar
  141. Nelson D (1985) Minimizing nitrogen losses in non-irrigated eastern areas. In: Plan Nutrient Use and the Envronment (pp 173–209). Fertilizer Inst, Washington, DCGoogle Scholar
  142. Nixon SW (1992) Quantifying the relationship between nitrogen input and productivity of marine ecosystems. Adv. Mar. Techn. Conf. 5: 57–83Google Scholar
  143. Nixon SW (1995) Coastal marine eutrophication: A Definition, social causes, and future concerns. OPHELIA 41: 199–219Google Scholar
  144. Nixon SW, Ammerman J, Atkinson L, Berounsky V, Billen G, Boicourt W, Boynton W, Church T, Di Toro, Elmgren R, Garber J, Giblin A, Jahnke R, Owens N, Pilson, MEQ, & Seitziner S (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochem. 35: 75–139Google Scholar
  145. OECD (1991) OECD Environmental Data, Compendium 1991. Organisation for Economic Co-operation and Development. ParisGoogle Scholar
  146. Overgaard K (1984) Nitrate pollution of groundwater in Denmark. 20th Nordic Symposium on Water Pollution, NORDFORSKGoogle Scholar
  147. Owens M, Garland JHN, Hart IC & Wood G (1972) Nutrient budgets in rivers. Symp. Zool. Soc. Land. 29: 21–40Google Scholar
  148. Pacés T (1982) Natural and anthropogenic flux of major elements from central Europe. Ambio. 11 (4): 206–208Google Scholar
  149. Paerl HW (1993) Emerging role of atmospheric nitrogen deposition in coastal eutrophication: biogeochemical and trophic perspectives. Can. J. Fish. Aquat. Sci. 50: 2254–2269Google Scholar
  150. Paré C & Goulet M (1980) Evolution physico-chimique des eaux de Radissonie: secteur Nottaway-Broadback-Rupert (1977–1978) Gouvernement du Quebec, Ministere des Richesses Naturelles, QuebecGoogle Scholar
  151. Peierls B, Caraco N, Pace M & Cole J (1991) Human influence on river nitrogen. Nature 350: 386–387Google Scholar
  152. Peterjohn WT & Correll DL (1984) Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecol. 65 (5): 1466–1475Google Scholar
  153. Pocklington R & Tan FC (1987) Seasonal and annual variations in the organic matter contributed by the St Lawrence River to the Gulf of St Lawrence. Geochim Cosmochim Acta 51: 2579–2586Google Scholar
  154. Probst JL (1985) Nitrogen and phosphorus exporation in the Garonne basin (France). J Hydrol. 76: 281–305Google Scholar
  155. Prospero JM, Barrett K, Church T, Dentener F, Duce RA, Galloway JN, Levy II H, Moody J & Quinn P (1996) Atmospheric deposition of nutrients to the North Atlantic basin. Biogeochem. 35: 75–139Google Scholar
  156. Rabalais NN, Turner RE, Justic D, Dortch Q, Wiseman WJ & Sen Gupta BK (in press) Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. EstuariesGoogle Scholar
  157. Ramirez AJ (1991) Transport of phosphorus by Venezuelan rivers. In: Tiessen H, Lopez-Hernandez D & Salcedo IH (Eds) Phosphorus Cycles in Terrestrial and Aquatic Ecosystems, Proceedings of Regional Workshop 3: South and Central America (pp 224–33). Saskatchewan Inst of Pedology, University of Sakatchewan, SaskatoonGoogle Scholar
  158. Resch HN (1991) The balance of nitrogen composition in the FRG. In: Borght P & Tychon B (Eds) Gestion de l'azote agricole et qualite des eaus Vander. Cebedoc, Liege, BelgiumGoogle Scholar
  159. Reynolds B, Ormerod S & Gee A (1994) Spatial patterns in stream nitrate concentrations in upland Wales in relation to catchment forest cover and forest age. Envir. Poll. 84: 27–33Google Scholar
  160. Rijkswaterstaat (1992) Guidance Document for the NSTF Modeling WorkshopGoogle Scholar
  161. Robertson GP & Rosswall T (1986) Nitrogen in West Africa: The regional cycle. Ecol. Monogr. 56: 43–72Google Scholar
  162. Rosenberg R, Elmgren R, Fleischer S, Jonsson P, Persson G & Dahlin H (1991) Marine Eutrophication Case studies in Sweden. Ambio. 19: 103–108Google Scholar
  163. Salati E, Sylvester-Bradley R & Victoria RL (1982) Regional gains and losses of nitrogen in the Amazon basin. Plant and Soil 67: 367–376Google Scholar
  164. Santschi PH & Schindler DW (1977) Chemical and geochemical studies of Lake Biel. Schweiz. Zeit. Hydrobiol. 39: 182–200Google Scholar
  165. Schelske CL (1985) Biogeochemical silica mass balances in Lake Michigan and Lake Superior. Biogeochem. 1: 197–218Google Scholar
  166. Schepers JS, Frank KD & Watts DG (1983) Influence of irrigation and nitrogen fertilization on groundwater quality. IAHS Publ 146: 21–29Google Scholar
  167. Schetagne R & Roy D (1985) Reseau de surveillance ecologique du Complexe la Grande 1977–1984 Physico-chimie et pigments chlorophylliens Annexe 1 Region de La Grande 2 Societe d'energie de la Baie James Direction Ingenierie et Environnement, MontrealGoogle Scholar
  168. Schetagne R (1981) Reseau de surveillance ecologique du Complexe la Grande 1977–1984 Physico-chimie et pigments chlorophylliens Analyses de la Baie James Direction Environnement, MontrealGoogle Scholar
  169. Schindler DW & Bayley SE (1993) The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition. Global Biogeochem. Cycles 7: 717–733Google Scholar
  170. Schlesinger WH (1991) Biogeochemistry: An Analysis of Global Change. Academic Press, San DiegoGoogle Scholar
  171. Schlesinger WH & Hartley AE (1991) A global budget for atmospheric NH3. Biogeochem. 15: 191–211Google Scholar
  172. Schroder H (1985) Nitrogen losses from Danish agriculture: trends and consequences. Agric., Ecosys. and Envir. 14: 279–289Google Scholar
  173. Schulze E-D (1989) Air pollution and forest decline in a spurce (Picea abies) forest. Science 244: 776–783Google Scholar
  174. Schulze E-D, De Vries W, Hauhs M, Rosén K, Rasmussen L, Tann O-C & Nilsson J (1989) Critical loads for nitrogen deposition in forest ecosystems. Water, Air and Soil Poll. 48: 451–456Google Scholar
  175. Seitzinger SP (1987) Nitrogen biogeochemistry in an unpolluted estuary: The importance of benthic denitrification. Mar. Ecol. Prog. Ser. 37: 65–73Google Scholar
  176. Skibe U, Cresser MS, Derwent RG & Futty DW (1989) Peat acidification in Scotland. Nature 337: 68–69Google Scholar
  177. Skole D & Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260: 1905–1910Google Scholar
  178. Sluijsmans CMF, Van Dijk TA, Kolenbrander GJ, de la Lande Cremer LCN, Smilde KW, Werkoven CME (1978) L'épandage des effluents sur les sols agricoles dans la CEE Informations sur l'agriculture. Vol 47Google Scholar
  179. Smil V (1990) Nitrogen and phosphorus. In: Turner BL, Clark WC, Kates RW, Richards JF, Mathews J & Meyer WB (Eds) The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere over the Past 300 Years (pp 423–436). Cambridge University Press, CambridgeGoogle Scholar
  180. Smith RA, Alexander RB & Lanfear KJ (1993) Stream waterquality in the coterminous United States — status and trends of selected indicators during the 1980's. In: National Water Summary 1990–91 USGS Water Supply Paper 2400 (pp 111–140). US Govt Printing Office, Washington, DCGoogle Scholar
  181. Smith RV, Stevens RJ, Foy RH & Gibson CE (1982) Upward trend in nitrate concentration in rivers discharging into Lough Neagh for the period 1969–1979. Water Res. 16: 183–188Google Scholar
  182. Soderlund R & Rosswall T (1982) The nitrogen cycles. In: HuntzingerO (Ed) The Handbook of Environmental Chemistry, vol 1. part B, The Natural Environment and the Biogeochemical Cycles (pp 61–81). Springer Verlag, New YorkGoogle Scholar
  183. Sollins P, Grier CC, McCorison FM, Cromack K & Fogel R (1980) The internal element cycles of and old-growth Douglas fir ecosystem in western Oregon. Ecol. Monogr. 50: 261–285Google Scholar
  184. Stallard RF (1985) River chemistry, geology, geomorphology, and soils in the Amazon and Orinoco basins. In: Drever JI (Ed) The Chemistry of Weathering (pp 293–316). Reidel, DordrechtGoogle Scholar
  185. Stevenson FJ (1982) Nitrogen in Agricultural Soils. American Society of Agronomy, Inc. Madison, WisconsinGoogle Scholar
  186. Strebel O, Duynisveld WHM & Bottcher J (1989) Nitrate pollution of groundwater in Wester Europe. Agric., Ecosys. and Envir. 26: 189–214Google Scholar
  187. Strebel OJ, Bottcher J & Duynisveld WHM (1984) Einfluss von Strandortbedingungen und bodemnutzung auf nitratauswaschung und Nitratkonzentration des Grundwassers Landwirtschaft Forschung Kongressband, Karlsruhe: 33–34Google Scholar
  188. Thibert S (1994) Exportations naturelles et anthropiques des ions majeurs et des elements nutritifs dans le basinn de la Seine. Approches methodologiques. Ph.D. Thesis (p 195) University of Paris VLGoogle Scholar
  189. Tidal Waters Division of Rijkswaterstaat (1992) Guidance documents for the North Sea Task Force Modelling Workshop, 6–8 May 1992, The HagueGoogle Scholar
  190. Tilman GD (1984) Plant dominance along an experimental nutrient gradient. Ecol. 65: 1445–1453Google Scholar
  191. Triska FJ, Jackman AP, Duff JH & Avanzino RJ (1994) Ammonium sorption to channel and riparian sediments: a transient storage pool for dissolved inorganic nitrogen. Biogeochem. 26: 67–83Google Scholar
  192. Turner RE & Rabalais NN (1991) Changes in Mississippi River water quality this century. BioSci. 41: 140–147Google Scholar
  193. Uehara G & Gilman G (1981) The minerology, chemistry and physics of tropcial soils with variable charge clays. Westview Press, Boulder, COGoogle Scholar
  194. Ulehlova B (1987) Chemical composition of rain and lysimetric waters from grasslands with different rates of fertilization. In: Moldan B & Paces T (Eds) GEOMON: International Workshop on Geochemistry and Monitoring in Representative Basins (pp 105–107). Geological Survey, PragueGoogle Scholar
  195. UNESCO (1978) World water balance and water resources of the earth. Studies and Reports in Hydrology, UNESCOGoogle Scholar
  196. UNESCO (1992) Discharge of selected rivers of the world. UNESCO/Gidrometeoizdat, St PetersburgGoogle Scholar
  197. Van der Leeden F (1975) Water Resources of the world: Selected Statistics. Water Information Center, Port Washington, New YorkGoogle Scholar
  198. Van der Leeden F, Troise FL & Todd DK (1990) The Water Encyclopedia Second edition. Lewis Publ, Chelsea, MIGoogle Scholar
  199. Van Kessel JF (1977) Factors affecting the denitrification rate in two water-sediment systems. Water Research II: 259–267Google Scholar
  200. van Breeman N, Burroughs PA, Velthorst EJ, van Dobben HF, de Wit T, Ridder TB & Reijnders HFR (1982) Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature 299: 548–550Google Scholar
  201. Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecol. 65 (1): 285–298Google Scholar
  202. Vitousek PM (1994) Beyond global warming: Ecology and global change. Ecol. 75 (7): 1861–1876Google Scholar
  203. Vitousek PM & Howarth RW (1991) Nitrogen limitation on land and sea: how can it occur? Biogeochem. 13: 87–115Google Scholar
  204. Vitousek PM & Matson PA (1993) Agriculture, the global nitrogen cycle, and trace gas flux. In: Oremland RS (Ed) The Biogeochemistry of Global Change: Radiative Trace Gases (pp 193–208). Chapman and Hall, New YorkGoogle Scholar
  205. Vitousek PM & Reiners WA (1975) Ecosystem succession and nutrient retention: A hypothesis. BioSci. 25: 376–381Google Scholar
  206. VollenwiederR (1968) Les bases scientifiques de l'eutrophisation des lacs et des eaux courantes sous l'aspect particulier du phosphore et de l'azote comme facteurs d'eutrophisation Rept DAS/CSI/68-27 Paris, OCDEGoogle Scholar
  207. Vought L, Dahl J, Pedersen C & Lacoursiere J (1994) Nutrient retention in riparian ecotones. Ambio. 23: 342–348Google Scholar
  208. Wafar MVM, Le Corre P & Birrien JL (1989) Transport of carbon, nitrogen and phosphorus in a Brittany river, France. Estuar. Coast. Shelf Sci. 29: 489–500Google Scholar
  209. Ward RC (1981) River systems and river regimes. In: Lewin J (Ed) British Rivers. Allen & Unwin, Ltd, LondonGoogle Scholar
  210. Webb BW & Walling DE (1985) Nitrate behaviourin streamflow from a grassland catchment in Devon, UK. Water Res. 19: 1005–1016Google Scholar
  211. Willison TW, Splatt PR & Anderson JM (1990) Nutrient loading of a forest soil: a manipulative approach using rooted experimental chambers. Oecologia 82: 507–512Google Scholar
  212. Woodmansee RG (1978) Additions and losses of nitrogen in grassland ecosystems. Science 28: 448–453Google Scholar
  213. WRI/UNEP (1988) World resources 1988–89. World Resources Institute in collaboration with United Nations Environment Programme. Basic Books Inc., New YorkGoogle Scholar
  214. Wright JW (1993) The Universal Almanac. Andrews and McHeel, Kansas CityGoogle Scholar
  215. Wulff F, Stigebrandt A & Rahm L (1990) Nutrient dynamics of the Baltic Sea. Ambio. 19 (3): 126–133Google Scholar
  216. Wyer MD & Hill AR (1984) Nitrate transformations in southern Ontario stream sediments. Water Resources Bull. 20: 729–737Google Scholar
  217. Zhong Cai MA (1991) Modelisation du transfert des nitrates: du bassin de recherche au grand bassin (exemples des bassins de Melarchez et de la Charente) Thesis, Universite Louis Pasteur, Strasbourg, FranceGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • R. W. Howarth
    • 1
  • G. Billen
    • 2
  • D. Swaney
    • 1
  • A. Townsend
    • 1
  • N. Jaworski
    • 3
  • K. Lajtha
    • 4
  • J. A. Downing
    • 5
  • R. Elmgren
    • 6
  • N. Caraco
    • 7
  • T. Jordan
    • 8
  • F. Berendse
    • 9
  • J. Freney
    • 10
  • V. Kudeyarov
    • 11
  • P. Murdoch
    • 12
  • Zhu Zhao-Liang
    • 13
  1. 1.Ecology & SystematicsCornell UniversityIthacaUSA
  2. 2.Groupe de Microbiol. des Milieux AquatiquesUniversite Libre de BruxellesBruxellesBelgium
  3. 3.U.S. EPA LabNarragansettUSA
  4. 4.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA
  5. 5.Animal EcologyIowa State UniversityAmesUSA
  6. 6.Department of Systems Ecology and Centre for Marine ResearchStockholm UniversityStockholmSweden
  7. 7.Institute of Ecosystem StudiesMillbrookUSA
  8. 8.Smithsonian Environmental Research CenterEdgewaterUSA
  9. 9.CABO DLOWageningenThe Netherlands
  10. 10.CSIRODivision of Plant IndustryCanberraAustralia
  11. 11.Institute of Soil Science and PhotosynthesisMoscow RegionRussia
  12. 12.Water Resources DivisionU.S. Geological SurveyAlbanyUSA
  13. 13.Lab of Material Cycling in PedosphereInstitute of Soil ScienceNanjingPeople's Republic of China

Personalised recommendations