Advertisement

Biogeochemistry

, Volume 35, Issue 1, pp 27–73 | Cite as

Atmospheric deposition of nutrients to the North Atlantic Basin

  • J. M. Prospero
  • K. Barrett
  • T. Church
  • F. Dentener
  • R. A. Duce
  • J. N. Galloway
  • H. LevyII
  • J. Moody
  • P. Quinn
Article

Abstract

Atmospheric chemical models are used to estimate the deposition rate of various inorganic oxides of nitrogen (NOy), reduced nitrogen species (NHx) and mineral dust to the North Atlantic Ocean (NAO). The estimated deposition of NOy to the NAO (excluding the coastal ocean) and the Caribbean is 360 × 109 Moles-N m−2 yr−1 (5.0 Tg N); this is equivalent to about 13% of the estimated global emission rate (natural and anthropogenic) and a quarter of the emission rate from sources in North America and Europe. In the case of NHx, 258 Moles-N m−2 yr−1 (3.6 Tg N) are deposited to the NAO and the Caribbean; this is about 6% of the global continental emissions. There is relatively little data on the deposition rate of organic nitrogen species; nonetheless, this evidence suggests that concentrations and deposition rates are comparable to those for inorganic nitrogen.

Because of anthropogenic emissions, the present-day deposition rate of NOy to the NAO is about five times greater than pre-industrial times largely due to emissions from energy production and biomass burning. The present-day emissions of NHx from continental anthropogenic sources are about four-to-five times greater than natural sources, mostly due to the impact of emissions from animal wastes associated with food production. Indeed, present-day emissions of NHx from animal waste are estimated to be about 10 times greater than the pre-human era. The deposition rate of mineral dust to the NAO is about 170 Tg yr−1; deposited with the dust (assuming average crustal abundances) is about 6 Tg yr−1 of Fe and 0.2 Tg yr−1 of P. Dust deposition in the NAO is almost completely attributable to transport from North African sources; a substantial fraction of the dust over the NAO is probably mobilized as a consequence of land use practices in arid regions and, consequently, it should be regarded as a pollutant.

Key words

dust deposition iron models NHx NOy nutrients 

Abbreviations

AEROCE

Atmosphere/Ocean Chemistry Experiment

AOT

aerosol optical thickness

EMEP

Cooperative Program for Monitoring and Evaluation of Long Range; -Transmission of Air Pollution in Europe

GESAMP

A model used by the Group of Experts on the Scientific Aspects of Marine Pollution

GCM

General Circulation Model

GCTM

Global Chemical Transport Model

GFDL

Geophysical Fluid Dynamic Laboratory

MOGUNTIA

Model of the Global Universal Tracer Transport in the Atmosphere

MSC

Meteorological Synthesizing Centre

NAB

North Atlantic Basin

NAO

North Atlantic Ocean

NAS

National Academy of Sciences

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae MO (1995) Climatic effects of changing atmospheric aerosol levels. In: Henderson-Sellers A (Ed) World Survey of Climatology, Vol. 16, Future Climates of the World (pp 341–392). Elsevier, AmsterdamGoogle Scholar
  2. Arimoto R, Duce RA & Ray BJ (1989) Concentrations, sources, and air/sea exchange of trace elements in the atmosphere over the Pacific Ocean. In: Riley JP, Chester R & Duce RA (Eds) Chemical Oceanography, Vol. 10, SEAREX. (pp. 107–149). Academic Press, LondonGoogle Scholar
  3. Arimoto R, Ray BJ, Duce RA, Hewitt AD, Boldi R & Hudson A (1990) Concentrations, sources, and fluxes of trace elements in the remote marine atmosphere of New Zealand. J. Geophys. Res. 95: 22,389–22,405Google Scholar
  4. Arimoto R, Duce RA, Savoie DL & Prospero JM (1992) Trace elements in aerosol particles from Bermuda and Barbados: Concentrations, sources, and relationships to aerosol sulfate. J. Atmos. Chem. 14: 439–457Google Scholar
  5. Barrie LA & Bottenheim JW (1991) Sulphur and nitrogen pollution in the Arctic atmosphere. In: WT Sturges (Eds) Pollution of the Arctic Atmosphere (pp 2505–2512). Elsevier, London and New YorkGoogle Scholar
  6. Benkovitz CM, Dignon J, Scholtz T, Pacyna J, Tarrason L, Dignon J, Voldner EC, Spiro PA, Logan JA & Graedel TE (1995) Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. (submitted)Google Scholar
  7. Bergametti G, Dutot A-L, Buat-Menard P, Losno R & Remoudaki E (1989a) Seasonal variability of the elemental composition of atmospheric aerosol particles over the northwestern Mediterranean. Tellus 41 (B): 353–361Google Scholar
  8. Bergametti G, Gomes L, Coude-Gaussen G, Rognon P & Le Coustumer M (1989b) African dust observed over Canary Islands: Source-regions identification and transport pattern for some summer situations. J. Geophys. Res. 94: 14,855–14,864Google Scholar
  9. Bergametti G, Remoudaki E, Losno R, Steiner E & Chatenet B (1992) Source, transport and deposition of atmospheric phosphorus over the northwestern Mediterranean. J. Atmos. Chem. 14: 501–513Google Scholar
  10. Betzer PR, Carder KL, Duce RA, Merrill JT, Tindale NW, Uematsu M, Castello DK, Young RW, Feeley RA, Breland JA, Bernstein RE & Greco AM (1988) A pulse of Asian dust to the central North Pacific: Long range transport of giant mineral aerosol particles. Nature 336: 568–570Google Scholar
  11. Buijsman E, Jonker PJ, Asman WAH & Ridder TB (1991) Chemical composition of precipitation collected on a weathership in the North Atlantic. Atmos. Environ. 25A (5/6): 873–883Google Scholar
  12. Cornell S, Rendell A & Jickells T (1995) Atmospheric inputs of organic nitrogen to the oceans. Nature 376: 243–246Google Scholar
  13. d'Almeida GA (1986) A model for Saharan dust transport. J. Climate Appl. Meteorol. 25: 903–916Google Scholar
  14. d'Almeida GA & Schütz L (1983) Number, mass and volume distributions of mineral aerosols and soils of the Sahara. J. Clim. Appl. Meteorol. 22: 233–243Google Scholar
  15. Delaney AC & Zenchelsky ST (1976) The organic component of wind-erosion-generated soil-derived aerosol. Soil Sci. 121: 146–155Google Scholar
  16. DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE & Molina MJ (1994) Chemical kinetics and photochemical data for use in stratospheric modeling, JPL/NASA: Evaluation number 11Google Scholar
  17. Dentener FJ & Crutzen PJ (1994) A three dimensional model of the global ammonia cycle. J. Atmos. Chem. 19: 331–369Google Scholar
  18. DiTullio GR, Hutchins DA & Bruland KW (1993) Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean. Limnol. Oceanogr. 38: 495–508Google Scholar
  19. Donaghay PL, Liss PS, Duce RA, Kester DR, Hanson AK, Villareal T, Tindale NW & Gifford DJ (1991) The role of episodic atmospheric nutrient inputs in the chemical and biological dynamics of oceanic ecosystems. Oceanography 4: 62–70Google Scholar
  20. Duce RA, Mohnen VA, Zimmerman PR, Grosjean D, Cautreels W, Chatfield R, Jaenicke R, Ogren JA, Pellizzari ED & Wallace GT (1983) Organic material in the global troposphere. Rev. Geophys. & Space Phys. 21: 921–952Google Scholar
  21. Duce RA (1986) The impact of atmospheric nitrogen, phosphorus, and iron species on marine biological productivity. In: Buat-Menard P (Ed) The Role of Air-Sea Exchange in Geochemical Cycling (pp 497–528). Reidel, DordrechtGoogle Scholar
  22. Duce RA & Tindale NW (1991) Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 36: 1715–1726Google Scholar
  23. Duce RA Liss PS Merrill JT Atlas EL Buat-Menard P Hicks BB Miller JM Prospero, JM Arimoto R, Church T, Ellis M, Galloway JN, Hanson L, Jickells TD, Knap AH, Reinhardt KH, Schneider B, Soudine A, Tokos JJ, Tsunogai S, Wollast R & Zhou M (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem. Cycles 5: 193–259Google Scholar
  24. Duce RA (1995) Sources, distributions, and fluxes of mineral aerosols and their relationship to climate. In: Charlson RJ & Heintzenberg J (Eds) Dahlem Workshop on Aerosol Forcing of Climate (pp 43–72). BerlinGoogle Scholar
  25. Eppley RW (1980) Estimating phytoplankton growth rates in the central oligotrophic oceans. In: Falkowski PG (Ed) Primary Productivity in the Sea (pp 231–242). Plenum, New YorkGoogle Scholar
  26. Fanning KA (1989) Influence of atmospheric pollution on nutrient limitation in the ocean. Nature 339: 460–463Google Scholar
  27. Galloway JN, Knap AH & Church TM (1983) The composition of western Atlantic precipitation using shipboard collectors. J. Geophys. Res. 88: 10,589–10,865Google Scholar
  28. Galloway JN (1985) The deposition of sulfur and nitrogen from the remote atmosphere, background paper. In: Reidel D (Ed) The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere (pp 141–175). Norwell, MassGoogle Scholar
  29. Galloway JN & Whelpdale DM (1987) WATOX-86 overview and western North Atlantic Ocean S and N atmospheric budgets. Global Biogeochem. Cycles 1: 261–281Google Scholar
  30. Galloway JN, Keene WC, Artz RS, Miller JM, Church TM & Knap AH (1989) Processes controlling the concentrations of SO4=, NO4, NH4+, H+, HCOOT, and CH3COOT in precipitation on Bermuda. Tellus 41B: 427–433Google Scholar
  31. Galloway JN, Savoie DL, Keene WC & Prospero JM (1993) The temporal and spatial variability of scavenging ratios for nss sulfate, nitrate, methanesulfonate and sodium in the atmosphere over the North Atlantic Ocean. Atmos. Environ. 27A: 235–250Google Scholar
  32. Galloway JN, Levy H & Kasibhatia PS (1994) Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen. Ambio 23: 120–123Google Scholar
  33. Galloway JN, Schlesinger WH, Levy II H, Michaels A & Schnoor JL (1995) Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochem. Cycles 9 (2): 235–252Google Scholar
  34. Galloway JN (1996). Acid deposition in marine regions. In: DM Whelpdale & Kaiser MS (Eds) Acid Deposition Assessment Report, WMO/UNEP, Geneva (in press)Google Scholar
  35. Galloway JN, Zhao D, Thomson VE & Chang LH (1996) Nitrogen mobilization in the United States of America and the Peoples Republic of China. Atmos. Environ. (in press)Google Scholar
  36. Glantz MH (1994) The West African Sahel. In: Glantz MH (Ed) Drought Follows the Plow (pp 33–43) Cambridge Univ. Press, CambridgeGoogle Scholar
  37. Golitsyn G & Gillette DA (1993) Introduction: a joint Soviet-American experiment for the study of Asian desert dust and its impact on local meteorological conditions and climate. Atmos. Environ. 27A: 2467–2470Google Scholar
  38. Gorzelska K & Galloway JN (1990) Amine nitrogen in the atmospheric environment over the North Atlantic Ocean. Global Biogeochem. Cycles 4: 309–333Google Scholar
  39. Gorzelska K, Scudlark J & Keene W (1996) Dissolved organic nitrogen in the atmospheric environment. In: Ecological Risk: Science, Policy, Law, and Perception, Society of Environmental Toxicology and Chemistry. Denver (in press)Google Scholar
  40. Goudie AS & Middleton NJ (1992) The changing frequency of dust storms through time. Climatic Change 20: 197–225Google Scholar
  41. Graham WF & Duce RA (1979) Atmospheric pathways of the phosphorus cycle. Geochim. et Cosmochim. Acta 43: 1195–1208Google Scholar
  42. Graham WF & Duce RA (1982) The atmospheric transport of phosphorus to the western North Atlantic. Atmos. Environ. 16: 1089–1097Google Scholar
  43. Hameed S & Dignon J (1988) Changes in the geographical distributions of global emissions of NOx and SOx from fossil fuel combustion between 1966 and 1980. Atmos. Environ. 22: 441–449Google Scholar
  44. Hameed S & Dignon J (1992) Global emissions of nitrogen and sulfur oxides in fossil fuel combustion 1970–1986. J. Air Waste Management Assoc. 42: 159–163Google Scholar
  45. Hanseen JE, Pederson U, Schaug J, Dovland H, Pacnya JM, Semb A & Skjalmsen JE (1990) Summary report Chemical Coordinating Centre for the Fourth Phase of European Monitoring and Evaluation Program (EMEP), EMEP Cooperative programme for monitoring and evaluation of the long range transmission of air pollutants in Europe. Meteorol. Syn. Cent.-West. Norw. Meteorol. Inst., OsloGoogle Scholar
  46. Hansson ME (1994) The Renland ice core. A northern hemisphere record of aerosol composition over 120,000 years. Tellus 46B: 390–418Google Scholar
  47. Hardy JT & Crecilius EA (1981) Is atmospheric particulate matter inhibiting marine primary productivity? Environ. Sci. Technol. 15: 1103–1105Google Scholar
  48. Hasse L (1983) Introductory meteorology and fluid dynamics. In: Liss PS & Slinn WGN (Eds) Air-Sea Exchange of Gases and Particles (pp 1–52). Reidel, DordrechtGoogle Scholar
  49. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P & Zhu Z-L (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Altantic Ocean: natural and human influences (this volume)Google Scholar
  50. Ignatov AM, Stowe LL, Sakerin SM & Korotaev GK (1995) Validation of the NOAA/NESDIS satellite aerosol product over the North Atlantic in 1989. J. Geophys. Res. 100: 5123–5132Google Scholar
  51. Jahnke RA (1992) The Phosphorous Cycle. In: Global Biogeochemical Cycles (pp 301–315). Academic PressGoogle Scholar
  52. Jickells TD, Knap AH, Sheriff-Dow R & Galloway J (1990) No ecosystem shift. Nature 347: 25–26Google Scholar
  53. Jickells T (1995) Atmospheric inputs of metals and nutrients to the oceans: their magnitude and effects. Mar. Chem. 48: 199–214Google Scholar
  54. Jordan TE, Correll DL, Weller DE & Goff NM (1995) Temporal variation in precipitation chemistry on the shore of Chesapeake Bay. Water, Air, Soil Poll. 83: 263–284Google Scholar
  55. Joussaume S (1990) Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model. J. Geophys. Res. 95: 1909–1941Google Scholar
  56. Knap A, Jickells T Pszenny A & Galloway J (1986) Significance of atmospheric-derived fixed nitrogen on productivity of the Sargasso Sea. Nature 320: 158–159Google Scholar
  57. Knap AH (1990) The Long-Range Atmospheric Transport of Natural and Contaminant Substances, Kluwer, DordrechtGoogle Scholar
  58. Kasibhatla PS, Levy II H & Moxim WJ (1993) Global NOx, HNO3, PAN, and NOy distributions from fossil fuel combustion emissions: A model study. J. Geophys. Res. 98: 7165–7180Google Scholar
  59. Lacaux JP, Delmas R, Kouadio G, Cros B & Andreae MO (1992) Precipitation chemistry in the Mayombe Forest of Equatorial Africa. J. Geophys. Res. 97: 6195–6206Google Scholar
  60. Laj P, Palais J & Sigurdsson H (1992) Changing sources of impurities to the Greenland ice sheet over the last 250 years. Atmos. Environ. 26A: 2627–2640Google Scholar
  61. Lawrence MG, Chameides WL, Kasibhatla PS, Levy II H & Moxim WJ (1995) Lightning and atmospheric chemistry: The rate of atmospheric NO production In: Volland H (Ed) Handbook of Atmospheric Electrodynamics, Vol 1 (pp 189–202). CRC Press, Boca Raton, FlGoogle Scholar
  62. Legrand M, De Angelis M, Staffelback T Neftel A & Stauffer B (1992) Large perturbations of ammonium and organic acids content in the Summit-Greenland ice core: Fingerprint form forest fires?. Geophys. Res. Lett. 19: 473–475Google Scholar
  63. Legrand M (1995) Atmospheric chemistry changes versus past climate inferred from polar ice cores. In: Charlson RJ & Heintzenberg J (Eds) Dahlem Workshop on Aerosol Forcing of Climate (pp 123–152). BerlinGoogle Scholar
  64. Lepple FK (1975) Eolian dust over the North Atlantic Ocean. Ph.D. thesis, University of DelawareGoogle Scholar
  65. Lepple FK & Brine CJ (1976) Organic constitutents in eolian dust and surface sediments from Northwest Africa. J. Geophys. Res. 81: 1141–1147Google Scholar
  66. Levitus S, Conkright ME, Reid JL, Najjar RG & Mantyla A (1993) Distribution of nitrate, phosphate and silicate in the world oceans. Prog. Oceanogr. 31: 245–273Google Scholar
  67. Levy II H, Mahlman JD & Moxim WJ (1982) Tropospheric N2O variability. J. Geophys. Res. 87: 3061–3080Google Scholar
  68. Levy II H (1989) Simulated Global Deposition of Reactive Nitrogen Emitted by Fossil Fuel Combustion, In: Proceedings of IAHS Third Scientific Assembly, Symposium I, Atmospheric Deposition (pp 3–9). Baltimore, MDGoogle Scholar
  69. Levy H & Moxim WJ (1989) Simulated global distribution and deposition of reactive nitrogen emitted by fossil fuel consumption. Tellus 41B: 256–271Google Scholar
  70. Levy II H, Moxim WJ, Kasibhatla PS & Logan JA (1991) The global impact of biomass burning on tropospheric reactive nitrogen. In: Levine JS (Ed) Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications (pp 363–359). MIT Press, Cambridge, MAGoogle Scholar
  71. Levy II H, Moxim WJ & Kasibhatla PS (1995) A global 3-dimensional time-dependent lightning source of tropospheric NOx. J. Geophys. Res. (submitted)Google Scholar
  72. Littmann T (1991) Dust storm frequency in Asia: climatic control and variability. Int. J. of Climatology 11: 393–412Google Scholar
  73. Logan JA (1983) Nitrogen oxides in the troposphere: global and regional budgets. J. Geophys. Res. 88: 10,785–10,807Google Scholar
  74. Mahlman JD & Moxim WJ (1978) Tracer simulation using a global general circulation model: Results from a midlatitude instantaneous source experiment. J. Atmos. Sci. 35: 1340–1374Google Scholar
  75. Martin JH & Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331: 341–343Google Scholar
  76. Mayewski PA, Lyons WB, Spencer MJ, Twickler MS, Buck CF & Whitlow S (1990) An ice-core record of atmospheric response to anthropogenic sulphate and nitrate. Nature 346: 554–556Google Scholar
  77. McCarthy JJ & Carpenter EJ (1983) Nitrogen cycling in near-surface waters of the open ocean. In: Carpenter EJ & Capone DG (Eds) Nitrogen in the Marine Environment (pp 487–512). Academic Press, New YorkGoogle Scholar
  78. Merrill JT (1986) Atmospheric pathways to the oceans. In: Buat-Menard P (Ed) The Role of Air-Sea Exchange in Geochemical Cycling (pp 35–63). Reidel D, Norwood, MAGoogle Scholar
  79. Merrill JT (1989) Atmospheric long-range transport to the Pacific Ocean. In: Riley JP Chester R & Duce RA (Eds) Chemical Oceanography, Vol. 10, SEAREX (pp 15–50). Academic Press, LondonGoogle Scholar
  80. Michaels AF Siegel DA, Johnson RJ, Knap AH & Galloway JN (1993) Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms. Global Biogeochem. Cycles 7: 339–351Google Scholar
  81. Middleton NJ (1990) Wind erosion and dust-storm contro. In: Goudie AS (Ed) Techniques for Desert Reclamation (pp 87–108). John Wiley & Sons, New YorkGoogle Scholar
  82. Miller CB, Frost BW, Booth B, Wheeler PA, Landry MR & Welschmeyer N (1991) Ecological processes in the subarctic Pacific: Iron limitation cannot be the whole story. Oceanography 4: 71–78Google Scholar
  83. Moody JL & Galloway IN (1988) Quantifying the influence of atmospheric transport on the composition of precipitation on Bermuda. Tellus 40: 463–479Google Scholar
  84. Moore RM, Milley JE & Chatt A (1984) The potential for biological mobilization of trace elements from aeolian dust in the ocean and its importance in the case of iron. Oceanol. Acta. 7: 221–228Google Scholar
  85. Mopper K & Zika RG (1987) Free amino acids in marine rain: Evidence for oxidation and potential role in nitrogen cycling. Nature 325: 246–249Google Scholar
  86. Morel FMM, Reuter JG & Price NM (1991) Iron nutrition of phytoplankton and its possible importance in the ecology of ocean regions with high nutrient and low biomass. Oceanography 4: 56–61Google Scholar
  87. Mosher BW Winkler P & Jaffrezo J-L (1993) Seadonal aerosol chemistry at Dye 3, Greenland. Atmos. Environ. 27A: 2761–2772Google Scholar
  88. NAS (1978) The Tropospheric Transport of Pollutants and Other Substances to the Oceans (p 243). National Academy of Sciences Press, Washington, DCGoogle Scholar
  89. Nixon SW, Ammerman J, Atkinson L, Berounsky V, Billen G, Boicourt W Boynton W, Church T, DiToro D, Elmgren R, Garber J, Giblin A, Jahnke R, Owens N, Pilson MEQ & Seitzinger S (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. (this volume)Google Scholar
  90. OECD (1977) The OECD Programme on Long Range Transport of Air Pollutants: Measurements and Findings, ParisGoogle Scholar
  91. Oort AH (1983) Global atmospheric circulation statistics, 1958–1973, NOAA professional paper, 14, US Government printing office, Washington DCGoogle Scholar
  92. Owens NJP, Galloway JN & Duce RA (1992) Episodic atmospheric nitrogen deposition to the oligotrophic oceans. Nature 357: 397–399Google Scholar
  93. Pacyna JM, Larssen S & Semb A (1989) European Survey for NOx Emissions, 1985. Norsk Institutt for Luftforskning NILU OR 26/89 0-8668. Lillestrom, Norway.Google Scholar
  94. Paerl HW (1985) Enhancement of marine primary productivity by nitrogen enriched acid rain. Nature 315: 747–749Google Scholar
  95. Pfirman S, Wollenburg, I Theide J & Lange MA (1989) Lithogenic sediment on Arctic pack ice: potential aeolian flux and contribution to deep sea sediment. In: Leinen M & Sarnthein M (Eds) Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport (pp 463–493). Kluwer Academic Publ., BostonGoogle Scholar
  96. Prospero JM (1981) Aeolian transport to the world ocean. In: Emiliani C (Ed) The Sea, Vol. 7 The Oceanic Lithosphere (pp 801–874). Wiley Interscience, New YorkGoogle Scholar
  97. Prospero JM & Nees RT (1986) Impact of the North African drought and El Niño on mineral dust in the Barbados trade wind. Nature 320: 735–738Google Scholar
  98. Prospero JM, Glaccum RA & Nees RT (1986) Atmospheric transport of soil dust from Africa to South America. Nature 289: 570–572Google Scholar
  99. Prospero JM, Nees RT & Uematsu M (1987) Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. J. Geophys. Res. 92: 14,723–14,731Google Scholar
  100. Prospero JM, Uematsu M & Savoie DL (1989) Mineral aerosol transport to the Pacific Ocean. In: Riley JP, Chester R & Duce RA (Eds) Chemical Oceanography, 10 (pp 187–218). Academic Press, LondonGoogle Scholar
  101. Prospero JM (1990) Mineral aerosol transport to the North Atlantic and North Pacific: the impact of African and Asian sources. In: Knap AH (Ed) The Long-Range Atmospheric Transport of Natural and Contaminant Substances (pp 59–86). Kluwer, DordrechtGoogle Scholar
  102. Prospero JM (1996) The atmospheric transport of particles to the Ocean. In: Ittekkott V, Honjo S, Schäfer P & Depetris PJ (Eds) Particle Flux in the Ocean (pp 19–52). 1996 SCOPE Report 57. John Wiley & Sons LtdGoogle Scholar
  103. Prospero JM, Barrett K, Dentener F, Galloway JN, Levy II H & Moody J (1995) Models Used to Estimate Atmospheric Transport and Deposition to the North Atlantic Basin. Unpublished workshop manuscriptGoogle Scholar
  104. Pye K (1987) Aeolian Dust and Dust Deposits (p 334). Academic Press, LondonGoogle Scholar
  105. Quinn PK, Charlson RJ & Bates TS (1988) Simultaneous observations of ammonia in the atmosphere and ocean. Nature 335: 336–338Google Scholar
  106. Quinn PK, Bates TS, Johnson JE, Covert DS & Charlson RJ (1990) Interactions between the sulfur and reduced nitrogen cycles over the central Pacific Ocean. J. Geophys. Res. 95: 16,405–16,416Google Scholar
  107. Quinn PK, Asher WE & Charlson RJ (1992) Equilibria of the marine multiphase ammonia system. J. Atm. Chem. 14: 11–30Google Scholar
  108. Quinn PK, Barrett KJ, Dentener FJ, Lipschultz F & Kurtz KD (1996) Estimation of the air/sea exchange of ammonia for the North Atlantic Basin. (this volume)Google Scholar
  109. Rao CRN, Stowe LL & McClain EP (1989) Remote-Sensing of Aerosols over the Oceans Using AVHRR Data: Theory, Practice, and Applications. Int. J. Remote Sens. 10: 743–749Google Scholar
  110. Rendell AR, Ottley CJ, Jickells TD & Harrison RM (1993) The atmospheric input of nitrogen species to the North Sea. Tellus 45B: 53–63Google Scholar
  111. Riley JP, Chester R & Duce RA (1989) Chemical Oceanography, SEAREX, 10: 404. Academic Press, LondonGoogle Scholar
  112. Risbo T, Claussen HB & Rasmussen KL (1981) Supernovae and nitrate in the Greenland ice sheet. Nature 294: 637–639Google Scholar
  113. Rodhe H (1985) The transport of sulfur and nitrogen through the remote atmosphere. In: Galloway JN, Charlson RJ, Andreae MO & Rodhe H (Eds) The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere (pp 105–124). Reidel, DordrechtGoogle Scholar
  114. Sandnes H (1993) Calculated budgets for airborne acidifying components in Europe, 1985, 1987, 1988, 1989, 1990, 1991 and 1992. EMEP/MSC-W Report 1/93. Det Norske Meteorologiske Institutt Technical Report 109Google Scholar
  115. Savoie DL, Prospero JM, Oltmans SJ, Graustein WC, Turekian KK Merrill JT & Levy II H. (1992) Sources of nitrate and ozone in the marine boundary layer of the tropical North Atlantic. J. Geophys. Res. 97: 11,575–11,589Google Scholar
  116. Schlesinger WH & Hartley AE (1992) A global budget for atmospheric NH3. Biogeochem. 15: 191–211Google Scholar
  117. Schütz L, Jaenicke R & Pietrek H (1981) Saharan dust transport over the North Atlantic Ocean. Geol. Soc. Am. Special Paper 186: 87–100Google Scholar
  118. Schütz LW, Prospero JM, Buat-Menard P, Carvalho RAC, Cruzado A, Harass R, Heidam NZ & Jaenicke R (1990) The long-range transport of mineral aerosols: Group report In: Knap AH (Ed) The Large-Scale Atmospheric Transport of Natural and Contaminant Substances, Chapter 10 (pp 197–229). Kluwer Academic, Dordrecht, HollandGoogle Scholar
  119. Spokes LJ, Jickells TD & Lim B (1994) Solubilisation of aerosol metals by cloud processing: A laboratory study. Geochim. et Cosmochim. Acta 58 (15): 3281–3287Google Scholar
  120. Stedman DH & Shetter R (1983) The global budget of atmopsheric nitrogen species. In: Schwartz SS ew YorkGoogle Scholar
  121. Swap R, Garstang M, Graco S, Talbot R & Kallberg P (1992) Sahara dust in the Amazon basin. Tellus 44B: 133–149Google Scholar
  122. Talbot RW, Harriss RC, Browell V, Gregory GL, Sebacher DI & Beck SM (1986) Distribution and geochemistry of aerosols in the tropical North Atlantic troposphere: Relationship to Saharan dust. J. Geophys. Res. 91: 5173–5182Google Scholar
  123. Taylor SR & McLennan SM (1985) The Continental Crust: Its Composition and Evolution (pp 312). Blackwells, Oxford, EnglandGoogle Scholar
  124. Tegen I & Fung I (1994) Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res. 99: 22,897–22,914Google Scholar
  125. Tegen I & Fung I (1995) Contribution to the atmospheric mineral aerosol load from land surface modification. J. Geophys. Res. 100: 18,707–18,726Google Scholar
  126. Tuovinen J-P, Barrett K & Styve H (1994) Transboundary Acid Pollution in Europe: calculated fields and budgets 1985–1993. EMEP/MSC-W Report 1/94. Det Norske Meteorologiske Institutt Technical Report. OsloGoogle Scholar
  127. Uematsu M, Duce RA & Prospero JM (1985) Deposition of atmospheric mineral particles to the North Pacific. J. Atmos. Chem. 3: 123–138Google Scholar
  128. Wagenbach D, Munnich KO, Schotterer U & Oeschger H (1988) The anthropogenic impact on snow chemistry at Colle Gnifetti, Swiss Alps. Annal. Glaciol. 10: 183–187Google Scholar
  129. Warneck P (1988) Chemistry of the Natural Atmosphere (pp 757). Academic Press, San DiegoGoogle Scholar
  130. Whelpdale DM & Moody JL (1990) Large-scale meteorological regimes and transport process In: Knap AH & Marston MS (Eds) The Large-Scale Atmospheric Transport of Natural and Contaminant Substances (pp 3–36). D. Reidel, Dordrecht, HollandGoogle Scholar
  131. Whelpdale DM & Galloway JN (1994) Sulfur and reactive nitrogen oxide fluxes in the North Atlantic atmosphere. Global Biogeochem. Cycles 8: 481–493Google Scholar
  132. Whelpdale DM & Kaiser MS (1996) Acid Deposition Assessment Report. WMO/UNEP, GenevaGoogle Scholar
  133. Whitlow S, Mayewski PA & Dibb JE (1992) A comparison of major chemical species input timing and accumulation at South Pole and Summit, Greenland. Atmos. Environ. 26: 2045–2054Google Scholar
  134. Willey JD & Paerl HW (1993) Enhancement of chlorophyll a production in Gulf Stream surface seawater by synthetic versus natural rain. Marine Biology 116: 329–334Google Scholar
  135. Williams PM (1967) Sea surface chemistry: Organic carbon and organic and inorganic nitrogen and phosphorus in surface films and subsurface waters. Deep Sea Res. 14: 791–800Google Scholar
  136. Yienger JJ & Levy II H (1995) Global inventory of soil-biogenic NOx emissions, J. Geophys. Res. 100: 11,447–11,464Google Scholar
  137. Young RW, Carder KL, Betzer PR, Costello DK, Duce RA, DiTullio GR, Tindale NW, Laws EA, Uematsu M, Merrill JT & Feely RA (1991) Atmospheric iron inputs and primary productivity: Phytoplankton responses in the North Pacific. Global Biogeochem. Cycles 5: 119–134Google Scholar
  138. Zhu XR, Prospero JM, Millero FJ, Savoie DL & Brass GW (1992) The solubility of ferric ion in marine mineral aerosol solutions at ambient relative humidities. Mar. Chem., 38: 91–107Google Scholar
  139. Zhu X, Prospero JM, Savoie DL, Millero FJ, Zika RG & Saltzman ES (1993) Photoreduction of Fe(III) in marine mineral aerosol solutions. J. Geophys. Res. 98: 9039–9046Google Scholar
  140. Zhuang GS, Duce RA & Kester DR (1990) The solubility of atmospheric iron in surface seawater of the open ocean. J. Geophys. Res. 95: 16,207–16,216Google Scholar
  141. Zhuang G, Yi Z, Duce RA & Brown PR (1992) Chemistry of iron in marine aerosols. Global Biogeochem. Cycles 6: 161–173Google Scholar
  142. Zimmermann PH (1988) Moguntia: A handy global tracer model. In: van Dop H (Ed) Air Pollution Modeling and its Applications VI. Plenum, New YorkGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. M. Prospero
    • 1
  • K. Barrett
    • 2
  • T. Church
    • 3
  • F. Dentener
    • 4
  • R. A. Duce
    • 5
  • J. N. Galloway
    • 6
  • H. LevyII
    • 7
  • J. Moody
    • 8
  • P. Quinn
    • 9
  1. 1.University of Miami, RSMASMiami
  2. 2.Norwegian Meteorological InstituteOsloNorway
  3. 3.University of Delaware, College of Marine StudiesNewark
  4. 4.Department of Air QualityWageningen UniversityWageningenThe Netherlands
  5. 5.Texas A & M Univ., College of Geosciences & Maritime StudiesCollege Station
  6. 6.Dept. of Environmental SciencesUniversity of VirginiaCharlottesville
  7. 7.NOAA/GFDLPrinceton UniversityPrinceton
  8. 8.Dept. of Environmental SciencesUniversity of VirginiaCharlottesville
  9. 9.NOAA, Pacific Marine Environmental LaboratorySeattle

Personalised recommendations