Journal of Statistical Physics

, Volume 82, Issue 3–4, pp 797–821 | Cite as

Uniqueness and exponential decay of correlations for some two-dimensional spin lattice systems

  • Miaohua Jiang
  • Alexander E. Mazel


We consider a two-dimensional lattice spin system which naturally arises in dynamical systems called coupled map lattice. The configuration space of the spin system is a direct product of mixing subshifts of finite type. The potential is defined on the set of all squares in Z2 and decays exponentially with the linear size of the square. Via the polymer expansion technique we prove that for sufficiently high temperatures the limit Gibbs distribution is unique and has an exponential decay of correlations.

Key Words

Lattice spin system shift of finite type uniqueness of Gibbs state polymer expansion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bricmont and A. Kupiainen, High temperature expansions and dynamical systems, Preprint (1995).Google Scholar
  2. 2.
    L. A. Bunimovich and Ya. G. Sinai, Spacetime chaos in coupled map lattices,Nonlinearity 1:491–516 (1988).Google Scholar
  3. 3.
    R. Burton and J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type,Ergod. Theory Dynam. Syst. 14:213–235 (1994).Google Scholar
  4. 4.
    R. L. Dobrushin, The description of the random field by means of conditional probabilities and condition of its regularity,Theor. Prob. Appl. 13:197–224 (1968).Google Scholar
  5. 5.
    R. L. Dobrushin, Estimates of semiinvariants for the Ising model at low temperatures, Preprint ESI 125 (1994).Google Scholar
  6. 6.
    R. L. Dobrushin and M. Martirosjan, Non-finite perturbation of Gibbsian field.Theor. Math. Phys. 74:221–277 (1988).Google Scholar
  7. 7.
    R. L. Dobrushin and V. Warstat, Completely analytical interactions with infinite values,Prob. Theory Related Fields 84:335–359 (1990).Google Scholar
  8. 8.
    H. Georgii,Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988).Google Scholar
  9. 9.
    M. Jiang, Equilibrium states for lattice models of hyperbolic type,Nonlinearity, to appear (1005).Google Scholar
  10. 10.
    M. Jiang and Ya. B. Pesin, Equilibrium measures for coupled map lattices: Existence, uniqueness, and finite-dimensional approximations, Preprint (1995).Google Scholar
  11. 11.
    K. Kaneko, ed.,Theory and Applications of Coupled Map Lattices (Wiley, New York, 1993).Google Scholar
  12. 12.
    R. Kotecky and D. Preiss, Cluster expansion for abstract polymer models.Commun. Math. Phys. 103:491–498 (1986).Google Scholar
  13. 13.
    V. A. Malyshev and R. A. Minlos,Gibbs Random Fields (Kluwer, Dordrecht, 1991).Google Scholar
  14. 14.
    A. E. Mazel and Yu. M. Suhov, Ground states of a boson quantum lattice model, Preprint (1994).Google Scholar
  15. 15.
    Ya. B. Pesin and Ya. G. Sinai, Space-time chaos in chains of weakly interacting hyperbolic mappings,Adv. Sov. Math. 3(1991).Google Scholar
  16. 16.
    E. Seiler,Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics (Springer, Berlin, 1982).Google Scholar
  17. 17.
    B. Simon,The Statistical Mechanics of Lattice Gases, Vol. 1 (Princeton University Press, Princeton, New Jersey, 1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Miaohua Jiang
    • 1
  • Alexander E. Mazel
    • 2
    • 3
  1. 1.Department of MathematicsPennsylvania State UniversityUniversity Park
  2. 2.International Institute for Eearthquake Prediction Theory and Mathematical GeophysicsMoscowRussia
  3. 3.Center for Mathematical Sciences Research, Department of MathematicsRutgers UniversityNew Brunswick

Personalised recommendations