Advertisement

Journal of Statistical Physics

, Volume 82, Issue 3–4, pp 687–741 | Cite as

A perturbative approach to spectrum and correlation functions of the chiral Potts model

  • A. Honecker
Articles

Abstract

The massive high-temperature phase of the chiral Potts quantum chain is studied using perturbative methods. For the ℤ3-chain we present high-temperature expansions for the ground-state energy and the dispersion relations of the two single-particle states as well as two-particle states at general values of the parameters. We also present a perturbative argument showing that a large class of massive ℤn-spin quantum chains have quasiparticle spectra withn-1 fundamental particles. It is known from earlier investigations that—at special values of the parameters—some of the fundamental particles exist only for limited ranges of the momentum. In these regimes our argument is not rigorous, as one can conclude from a discussion of the radius of convergence of the perturbation series. We also derive correlation functions from a perturbative evaluation of the ground-state for the ℤ3-chain. In addition to an exponential decay we observe an oscillating contribution. The oscillation length seems to be related to the asymmetry of the dispersion relations. We show that this relation is exact at special values of the parameters for general ℤn using a form factor expansion.

Key Words

Chiral Potts model spin quantum chains perturbation expansions massive phases quasiparticles correlation functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ostlund, Incommensurate and commensurate phases in asymmetric clock models,Phys. Rev. B 24:398 (1981).Google Scholar
  2. 2.
    M. Marcu, A. Regev, and V. Rittenberg, The global symmetries of spin systems defined on Abelian groups. I,J. Math. Phys. 22:2740 (1981).Google Scholar
  3. 3.
    P. Centen, M. Marcu, and V. Rittenberg, Non-universality in ℤ3 symmetric spin systems,Nucl. Phys. B 205:585 (1982).Google Scholar
  4. 4.
    S. Howes, L. P. Kadanoff, and M. denNijs, Quantum model for commensurate-incommensurate transitions,Nucl. Phys. B 215:169 (1983).Google Scholar
  5. 5.
    G. von Gehlen and V. Rittenberg, ℤn-Symmetric quantum chains with an infinite set of conserved charges and ℤn zero modes,Nucl. Phys. B 257:351 (1985).Google Scholar
  6. 6.
    L. Dolan and M. Grady, Conserved charges from self-duality,Phys. Rev. D 25:1587 (1982).Google Scholar
  7. 7.
    J. H. H. Perk, Star-triangle equations, quantum Lax pairs, and higher genus curves,Proc. Symp. Pure Math. 49:341 (1989).Google Scholar
  8. 8.
    L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition,Phys. Rev. 65:117 (1944).Google Scholar
  9. 9.
    H. Au-Yang, B. M. McCoy, J. H. H. Perk, Sh. Tang, and M. L. Yan, Commuting transfer matrices in the chiral Potts models: Solutions of star-triangle equations with genus >1,Phys. Lett. 123A:219 (1987).Google Scholar
  10. 10.
    R. J. Baxter, J. H. H. Perk, and H. Au-Yang, New solutions of the star-triangle relations for the chiral Potts model,Phys. Lett. 128A:138 (1988).Google Scholar
  11. 11.
    R. J. Baxter, The superintegrable chiral Potts model,Phys. Lett. 133A:185 (1988).Google Scholar
  12. 12.
    G. Albertini, B. M. McCoy, and J. H. H. Perk, Commensurate-incommensurate transition in the ground state of the superintegrable chiral Potts model,Phys. Lett. 135A:159 (1989).Google Scholar
  13. 13.
    G. Albertini, B. M. McCoy, and J. H. H. Perk, Level crossing transitions and the massless phases of the superintegrable chiral Potts chain,Phys. Lett. 139A:204 (1989)Google Scholar
  14. 14.
    G. Albertini, B. M. McCoy, and J. H. H. Perk, Eigenvalue spectrum of the superintegrable chiral Potts model,Adv. Stud. Pure Math. 19:1 (1989).Google Scholar
  15. 15.
    H. Au-Yang, and J. H. H. Perk, Onsager's star-triangle equation: Master key to integrability,Adv. Stud. Pure Math. 19:57 (1989).Google Scholar
  16. 16.
    B. M. McCoy, The chiral Potts model: From physics to mathematics and back, inSpecial Functions ICM 90, Satellite Conference Proceedings, M. Kashiwara and T. Miwa, eds. (Springer, Berlin, 1991), p. 245.Google Scholar
  17. 17.
    S.-S. Roan, A characterization of “rapidity” curve in the chiral Potts model,Commun. Math. Phys. 145:605 (1992).Google Scholar
  18. 18.
    B. Davies, Onsager's algebra and superintegrability,J. Phys. A: Math. Gen. 23:2245 (1990).Google Scholar
  19. 19.
    B. Davies, Onsager's algebra and the Dolan-Grady condition in the non-self-dual case,J. Math. Phys 32:2945 (1991).Google Scholar
  20. 20.
    S.-S. Roan, Onsager's algebra, loop algebra and chiral Potts model, Preprint Max-Planck-Institut für Mathematik Bonn MPI/91-70.Google Scholar
  21. 21.
    C. Ahn and K. Shigemoto, Onsager algebra and integrable lattice models,Mod. Phys. Lett. A 6:3509 (1991).Google Scholar
  22. 22.
    V. A. Fateev and A. B. Zamolodchikov, Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in ℤn-symmetric statistical systems,Sov. Phys. JETP 62:215 (1985).Google Scholar
  23. 23.
    F. C. Alcaraz and A. L. Santos, Conservation laws for ℤ(N) symmetric quantum spin models and their exact ground state energies,Nucl. Phys. B 275:436 (1986).Google Scholar
  24. 24.
    V. A. Fateev and A. B. Zamolodchikov, Conformal quantum field theory models in two dimensions having ℤ3 symmetry,Nucl. Phys. B 280:644 (1987).Google Scholar
  25. 25.
    V. A. Fateev and S. L. Lukyanov, The models of two-dimensional conformal quantum field theory with ℤn symmetry,Int. J. Mod. Phys. A 3:507 (1988).Google Scholar
  26. 26.
    J. L. Cardy, Critical exponents of the chiral Potts model from conformal field theory,Nucl. Phys. B 389:577 (1993).Google Scholar
  27. 27.
    A. B. Zamolodchikov, Higher-order integrals of motion in two-dimensional models of the field theory with broken conformal symmetry,JETP Lett. 46:160 (1987).Google Scholar
  28. 28.
    A. B. Zamolodchikov, Integrals of motion in scaling 3-state Potts model field theory,Int. J. Mod. Phys. A 3:743 (1988).Google Scholar
  29. 29.
    A. B. Zamolodchikov, Integrable field theory from conformal field theory,Adv. studles in Pure Math. 19:641 (1989).Google Scholar
  30. 30.
    V. A. Fateev and A. B. Zamolodchikov, Integrable perturbations of ℤN parafermion models and theO(3) sigma model,Phys. Lett. B 271:91 (1991).Google Scholar
  31. 31.
    G. Mussardo, Off-critical statistical models: Factorized scattering theories and bootstrap Program,Phys. Rep. 218:215 (1992).Google Scholar
  32. 32.
    G. von Gehlen and A. Honecker, Multi-particle structure in the ℤn-chiral Potts models,J. Phys. A: Math. Gen. 26:1275 (1993).Google Scholar
  33. 33.
    G. von Gehlen, Phase diagram and two-particle structure of the ℤ3-chiral Potts model, inProceedings of International Symposium on Advanced Topics of Quantum Physics, J. Q. Liang, M. L. Wang, S. N. Qiao, and D. C. Su, (Science Press, Beijing, 1992), p. 248.Google Scholar
  34. 34.
    G. von Gehlen and A. Honecker, Excitation spectrum and correlation functions of the ℤ3-chiral Potts quantum spin chain,Nucl. Phys. B 435:505 (1995).Google Scholar
  35. 35.
    S. Dasmahapatra, R. Kedem, and B. M. McCoy, Spectrum and completeness of the 3 state superintegrable chiral Potts model,Nucl. Phys. B 396:506 (1993).Google Scholar
  36. 36.
    R. Kedem and B. M. McCoy, Quasi-particles in the chiral Potts model,Int. J. Mod. Phys. B 8:3601 (1994).Google Scholar
  37. 37.
    N. S. Han and A. Honecker, Low-temperature expansions and correlation functions of the ℤ3-chiral Potts model,J. Phys. A: Math. Gen. 27:9 (1994).Google Scholar
  38. 38.
    Ph. Christe and M. Henkel,Introduction to Conformal Invariance and its Applications to Critical Phenomena, (Springer-Verlag, Berlin, 1993).Google Scholar
  39. 39.
    A. B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory,Theor. Math. Phys. 65:1205 (1986).Google Scholar
  40. 40.
    G. Baym,Lectures on Quantum Mechanics (Benjamin/Cummings, 1969), Chapter 11.Google Scholar
  41. 41.
    G. Albertini, B. M. McCoy, J. H. H. Perk and S. Tang, Excitation spectrum and order parameter for the integrableN-state chiral Potts model,Nucl. Phys. B 314:741 (1989).Google Scholar
  42. 42.
    M. Henkel and J. Lacki, Integrable chiral ℤn-chiral quantum chains and a new class of trigonometric sums,Phys. Lett. 138A:105 (1989).Google Scholar
  43. 43.
    W. J. Camp, Decay of order in classical many-body systems. II. Ising model at high temperatures,Phys. Rev. B 6:960 (1972).Google Scholar
  44. 44.
    A. Honecker, Quantum spin models and extended conformal algebras, Ph.D. thesis BONN-IR-95-12 [hep-th/9503104] (1995).Google Scholar
  45. 45.
    F. M. Goodman, P. de la Harpe and V. F. R. Jones,Coxeter Graphs and Towers of Algebras (Springer-Verlag, Berlin, 1989).Google Scholar
  46. 46.
    K. Yildirim, Paritätssymmetrie im Chiralen ℤn-Symmetrischen Integrablen Potts-Modell, Diplomarbeit BONN-IB-95-02 (1995).Google Scholar
  47. 47.
    J. L. Cardy, Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories,Nucl. Phys. B 275:200 (1986).Google Scholar
  48. 48.
    G. von Gehlen, V. Rittenberg and G. Schütz, Operator content ofn-state quantum chains in thec=1 region.J. Phys. A: Math. Gen. 21:2805 (1988).Google Scholar
  49. 49.
    A. Honecker, Automorphisms ofW-algebras and extended rational conformal field theories,Nucl. Phys. B 400:574 (1993).Google Scholar
  50. 50.
    J. B. Kogut, An introduction to lattice gauge theory and spin systems,Rev. Mod. Phys. 51:659 (1979).Google Scholar
  51. 51.
    T. W. Krallman, Phasendiagramm des chiralen Pottsmodells, Diplomarbeit BONN-IR-91-11 (1991).Google Scholar
  52. 52.
    G. Albertini and B. M. McCoy, Correlation functions of the chiral Potts chain from conformal field theory and finite-size corrections,Nucl. Phys. B 350:745 (1990).Google Scholar
  53. 53.
    H. Lehmann, Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten Quantisierter Felder,Nuovo Cimento 11:342 (1954).Google Scholar
  54. 54.
    G. von Gehlen and L. Kaldenbach, Off-criticality behaviour of the ℤ5-quantum spin chain, in preparation.Google Scholar
  55. 55.
    G. Albertini, S. Dasmahapatra and B. M. McCoy, Spectrum doubling and the extended Brillouin zone in the excitations of the three states Potts spin chain,Phys. Lett. A 170:397 (1992).Google Scholar
  56. 56.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic Press, New York, 1978), Chapter XII.Google Scholar
  57. 57.
    T. Kato,Perturbation Theory for Linear Operators, 2nd ed. (Springer-Verlag, Berlin, 1976).Google Scholar
  58. 58.
    F. Rellich, Störungstheorie der Spektralzerlegung. IV,Math. Ann. 117:356 (1940).Google Scholar
  59. 59.
    T. Kato, On the convergence of the perturbation method. I,Prog. Theor. Phys. 4:514 (1949).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. Honecker
    • 1
  1. 1.Physikalisches Institut der Universität BonnBonnGermany

Personalised recommendations